首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat C6 glioma cells were cultured for 4 days in MEM medium supplemented with 10% bovine serum and Na+,K+-ATPase activity was determined in homogenates of harvested cells. Approximately 50% of enzyme activity was attained at 1.5 mM K+ and the maximum (2.76±0.13 mol Pi/h/mg protein) at 5 mM K+. The specific activity of Na+,K+-ATPase was not influenced by freezing the homogenates or cell suspensions before the enzyme assay. Ten minutes' exposure of glioma cells to 10–4 or 10–5 M noradrenaline (NA) remained without any effect on NA+,K+-ATPase activity. Neither did the presence of NA in the incubation medium, during the enzyme assay, influence the enzyme activity. The nonresponsiveness of Na+,K+-ATPase of C6 glioma cells to NA is consistent with the assumption that (+) form of the enzyme may be preferentially sensitive to noradrenaline. Na+,K+-ATPase was inhibited in a dose-dependent manner by vanadate and 50% inhibition was achieved at 2×10–7 M concentration. In spite of the fact that Na+,K+-ATPase of glioma cells was not responsive to NA, the latter could at least partially reverse vanadate-induced inhibition of the enzyme. Although the present results concern transformed glial cells, they suggest the possibility that inhibition of glial Na+,K+-ATPase may contribute to the previously reported inhibition by vanadate of Na+,K+-ATPase of the whole brain tissue.  相似文献   

2.
Summary In the isolated, superfused mouse lacrimal gland, intracellular Na+ activities (aNa i ) of the acinar cells were directly measured with double-barreled Na+-selective microelectrodes. In the nonstimulated conditionaNa i was 6.5±0.5 mM and membrane potential (V m ) was –38.9±0.4 mV. Addition of 1 mM ouabain or superfusion with a K+-free solution slightly depolarized the membrane and caused a gradual increase inaNa i . Stimulation with acetylcholine (ACh, 1 M) caused a membrane hyperpolarization by about 20 mV and an increase inaNa i by about 9 mM in 5 min. The presence of amiloride (0.1 mM) reduced the ACh-induced increase inaNa i by approximately 50%, without affectingV m and input resistance in both nonstimulated and ACh-stimulated conditions. Acid loading the acinar cells by an addition/withdrawal of 20 mM NH4Cl or by replacement of Tris+-buffer saline solution with HCO 3 /CO2-buffered solution increasedaNa i by a few mM. Superfusion with a Cl-free NO 3 solution or 1 mM furosemide or 0.5 mM bumetanide-containing solution had little effect on the restingaNa i levels, however, it reduced the ACh-induced increase inaNa i by about 30%. Elimination of metabolite anions (glutamate, fumarate and pyruvate) from the superfusate reduced both the restingaNa i and the ACh-induced increase inaNa i .The present results suggest the presence of multiple Na+ entry mechanisms activated by ACh, namely, Na+/H+ exchange, Na-K-Cl cotransport and organic substrate-coupled Na+ transport mechanisms.  相似文献   

3.
Summary The mammalian urinary bladder contains in its apical membrane and cytoplasmic vesicles, a cation-selective channel or activating fragment which seems to partition between the apical membrane and the luminal (or vesicular space). To determine whether it is an activating fragment or whole channel, we first demonstrate that solution known to contain this moiety can be concentrated and when added back to the bladder causes a conductance increase, with a percent recovery of 139±25%. Next, we show that using tip-dip bilayer techniques (at 21°C) and a patch-clamp recorder, the addition of concentrated solution resulted in the appearance of discrete current shots, consistent with the incorporation of a channel (as opposed to an activating fragment) into the bilayer. The residency time of the channel in the bilayer was best described by the sum of two exponentials, suggesting that the appearance of the channel involves an association of the channel with the membrane before insertion. The channel is cation selective and more conductive to K+ than Na+ (by a factor of 1.6). It has a linearI–V relationship, but a singlechannel conductance that saturates as KCl concentration is raised. This saturation is best described by the Michaelis-Menten equation with aK m of 160mm KCl and aG max of 20 pS. The kinetics of the channel are complex, showing at least two open and two closed states.Since the characteristics of this channel are similar to a channel produced by the degradation of amiloride-sensitive Na+ channels by the proteolytic enzyme kallikrein (which is released by the cortical collecting duct of the kidney), we suggest that this channel then is not synthesized by the cell but is rather a degraded form of the epithelial Na+ channel.  相似文献   

4.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

5.
Summary We report the synthesis of a radioactive, methylated analog of bromoamiloride which inhibits the amiloride-sensitive, epithelial Na+ channel reversibly and with high affinity. This synthesis was achieved by methylation of a nitrogen in the acylguanidinium moiety with tritiated methyliodide of high specific activity. This methylated bromoamiloride molecule (CH3BrA) was purified by both thin layer and high performance liquid chromatography. Proton nuclear magnetic resonance and mass spectroscopy techniques were used to determine the structure of this analog. This compound inhibited both short-circuit current ofin vitro frog skin and22Na+ influx into apical plasma membrane vesicles made from cultured toad kidney cells (line A6) with the same or lower apparent inhibitory dissociation constant as bromoamiloride. Irradiation with ultraviolet light rendered this inhibition irreversible in both A6 vesicles and frog skin. Preparation of radioactive CH3BrA yielded specific activities in excess of 1 Ci/mmol. We suggest that this compound will be useful in the isolation and purification of this ubiquitous Na+ channel.  相似文献   

6.
Summary Using intracellular microelectrode technique, we investigated the changes in membrane voltage (V) of cultured bovine pigmented ciliary epithelial cells induced by different extracellular solutions. (1)V in 213 cells under steady-state conditions averaged –46.1±0.6 mV (sem). (2) Increasing extracellular K+ concentration ([K+] o ) depolarizedV. Addition of Ba2+ could diminish this response. (3) Depolarization on doubling [K+] o was increased at higher [K+] o (or low voltage). (4) Removing extracellular Ca2+ decreasedV and reduced theV amplitude on increasing [K+] o . (5)V was pH sensitive. Extra-and intracellular acidification depolarizedV; alkalinization induced a hyperpolarization.V responses to high [K+] o were reduced at acidic extracellular pH. (6) Removing K o + depolarized, K o + readdition after K+ depletion transiently hyperpolarizedV. These responses were insensitive to Ba2+ but were abolished in the presence of ouabain or in Na+-free medium. (7) Na+ readdition after Na+ depletion transiently hyperpolarizedV. This reaction was markedly reduced in the presence of ouabain or in K+-free solution but unchanged by Ba2+. It is concluded that in cultured bovine pigmented ciliary epithelial cells K+ conductance depends on Ca2+, pH and [K+] o (or voltage). An electrogenic Na+/K+-transport is present, which is stimulated during recovery from K+ or Na+ depletion. This transport is inhibited by ouabain and in K+-or Na+-free medium.  相似文献   

7.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

8.
The epithelial Na+ channel (ENaC), composed of three subunits (α, β, and γ), is expressed in several epithelia and plays a critical role in salt and water balance and in the regulation of blood pressure. Little is known, however, about the electrophysiological properties of this cloned channel when expressed in epithelial cells. Using whole-cell and single channel current recording techniques, we have now characterized the rat αβγENaC (rENaC) stably transfected and expressed in Madin-Darby canine kidney (MDCK) cells. Under whole-cell patch-clamp configuration, the αβγrENaC-expressing MDCK cells exhibited greater whole cell Na+ current at −143 mV (−1,466.2 ± 297.5 pA) than did untransfected cells (−47.6 ± 10.7 pA). This conductance was completely and reversibly inhibited by 10 μM amiloride, with a Ki of 20 nM at a membrane potential of −103 mV; the amiloride inhibition was slightly voltage dependent. Amiloride-sensitive whole-cell current of MDCK cells expressing αβ or αγ subunits alone was −115.2 ± 41.4 pA and −52.1 ± 24.5 pA at −143 mV, respectively, similar to the whole-cell Na+ current of untransfected cells. Relaxation analysis of the amiloride-sensitive current after voltage steps suggested that the channels were activated by membrane hyperpolarization. Ion selectivity sequence of the Na+ conductance was Li+ > Na+ >> K+ = N-methyl-d-glucamine+ (NMDG+). Using excised outside-out patches, amiloride-sensitive single channel conductance, likely responsible for the macroscopic Na+ channel current, was found to be ∼5 and 8 pS when Na+ and Li+ were used as a charge carrier, respectively. K+ conductance through the channel was undetectable. The channel activity, defined as a product of the number of active channel (n) and open probability (P o), was increased by membrane hyperpolarization. Both whole-cell Na+ current and conductance were saturated with increased extracellular Na+ concentrations, which likely resulted from saturation of the single channel conductance. The channel activity (nP o) was significantly decreased when cytosolic Na+ concentration was increased from 0 to 50 mM in inside-out patches. Whole-cell Na+ conductance (with Li+ as a charge carrier) was inhibited by the addition of ionomycin (1 μM) and Ca2+ (1 mM) to the bath. Dialysis of the cells with a pipette solution containing 1 μM Ca2+ caused a biphasic inhibition, with time constants of 1.7 ± 0.3 min (n = 3) and 128.4 ± 33.4 min (n = 3). An increase in cytosolic Ca2+ concentration from <1 nM to 1 μM was accompanied by a decrease in channel activity. Increasing cytosolic Ca2+ to 10 μM exhibited a pronounced inhibitory effect. Single channel conductance, however, was unchanged by increasing free Ca2+ concentrations from <1 nM to 10 μM. Collectively, these results provide the first characterization of rENaC heterologously expressed in a mammalian epithelial cell line, and provide evidence for channel regulation by cytosolic Na+ and Ca2+.  相似文献   

9.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

10.
The relationship linking Na+ and H+ transports and exocytosis/endocytosis located in the apical membranes of the frog skin epithelium was investigated under various conditions of ion transport stimulation. The exocytosis process, indicating insertion of intracellular vesicles, which were preloaded with fluorescent FITC-dextran (FD), was measured by following the FD efflux in the apical bathing solution.Na+ transport stimulators such as serosal hypotonic shock (replacement of serosal Ringer solution by half-Ringer or 4/5-Ringer), apical PCMPS (10–3 m) and amphotericin-B (20 g/ml), were also found to stimulate the exocytotic rates of FD. Acidification of the epithelium by CO2 or post NH4 load, conditions which increase the proton secretion also stimulated the FD release in the apical bathing solution. On the other hand, alkalization of the epithelial cells increased the endocytosis rate. Hypotonic shock, acid load and PCMPS induced an increase in cell calcium which is probably the signal within the cell for exocytosis. In addition, quantitative spectrofluorimetric measurements of F-actin content after rhodamine-phalloidin staining, indicated a decrease in the F-actin content as a result of cell acidosis, hypotonic conditions and amphotericin additions. It is proposed that the insertion/retrieval of intracytoplasmic vesicles containing H+ pumps plays a key role in the regulation of proton secretion in tight epithelia. In addition, it is suggested that cytoskeleton depolymerization of F-actin filaments facilitates H+ pump insertion. A comparable working hypothesis for the control of Na+ transport is proposed.This work was supported by grants from the Commissariat à l'Energie Atomique and The Centre National de la Recherche Scientifique UA 638.We would like to thank Dr. R.M. Hays and Dr. J. Condeelis (Albert Einstein College of Medicine, New York) for stimulating discussions. The confocal microscope observations were done through the courtesy of Dr. C. Sardet and C. Rouvière (Station Marine de Villefranche/mer France).  相似文献   

11.
The roles of the Na+/H+ exchange system in the development and cessation of reperfusion induced ventricular arrhythmias were studied in the isolated perfused rat heart. The hearts were perfused in the working heart mode with modified Krebs Henseleit bicarbonate (KHB) buffer and whole heart ischemia was induced by a one-way ball valve with 330 beat/min pacing. Ischemia was continued for 15 min followed by 20 min of aerobic reperfusion (control). Amiloride (1.0mM), an inhibitor of the Na+/H+ exchange system, was added to the KHB buffer only during reperfusion (group B) or only during ischemic periods (group C). Electrocardiographic and hemodynamic parameters were monitored throughout the perfusion. Coronary effluent was collected through pulmonary artery cannulation and PO2, PCO2, HCO 3 and pH were measured by blood-gas analyzer.The incidence of reperfusion induced ventricular arrhythmias was 100%, 100% and 0% in control, group B and group C, respectively. The mean onset time of termination of reperfusion arrhythmias was significantly shorter in group B than in control. PCO2 increased from 39.0±0.9 to 89.3±6.0 mmHg at the end of ischemia in control and from 40.6±0.4 to 60.5±5.8 in group C, the difference between groups was statistically significant. HCO 3 level decreased from 21.8±0.1 to 18.3±0.5 mmol/l in control, however, this decrease was significantly inhibited in group C (from 22.0±0.5 to 20.3±0.2). The increase in PCO2 and the decrease in HCO 3 in group B were similar over time to those observed in control. The decrease in pH produced by ischemia was marked in control (from 7.35±0.01 to 6.92±0.04) and group B (from 7.34±0.01 to 6.94±0.02), whereas a decrease in pH was significantly prevented in group C (from 7.34±0.01 to 7.15±0.04). There were no significant differences in PCO2, HCO 3 or pH among the three groups during reperfusion.These experiments provide evidence that amiloride significantly prevented the incidence of reperfusion arrhythmias when added only during ischemia and significantly terminated reperfusion arrhythmias when added only during reperfusion. Amiloride may prevent a decrease in pH, due to alterations in PCO2 and/or HCO 3 . These changes in PCO2 and HCO 3 might be indirectly influenced by inhibition of the Na+/H+ exchange system via Cl/HCO 3 exchange. The mechanism by which amiloride terminates reperfusion arrhythmias seems to involve electrophysiological effects which were not directly addressed in this experiment.  相似文献   

12.
The purpose of the present study was the characterization of the receptors participating in the regulatory mechanism of glial Na+/K+-ATPase by serotonin (5-HT) in rat brain. The activity of the Na+ pump was measured in four brain regions after incubation with various concentrations of serotoninergic agonists or antagonists. A concentration-dependent increase in enzyme activity was observed with the 5-HT1A agonist R (+)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (8-OH-DPAT) in homogenates or in glial membrane enriched fractions from cerebral cortex and in hippocampus. Spiperone, a 5-HT1A antagonist, completely inhibited the response to 8-OH-DPAT but had no effect on Na+/K+-ATPase activity in cerebellum where LSD, a 5-HT6 agonist, elicited a dose-dependent response similar to that of 5-HT. In brainstem, a lack of reponse to 5-HT and other agonists was confirmed. Altogether, these results show that serotonin modulates glial Na+/K+-ATPase activity in the brain, apparently not through only one type of 5-HT receptor. It seems that the receptor system involved is different according to the brain region. In cerebral cortex, the response seems to be mediated by 5-HT1A as well as in hippocampus but not in cerebellum where 5-HT6 appears as the receptor system involved.  相似文献   

13.
Summary Elementary Na+ currents through single cardiac Na+ channels were recorded at –50 mV in cell-attached patches from neonatal rat cardiocytes kept at holding potentials between –100 and –120 mV.Na+ channel activity may occur as burst-like, closely-timed repetitive openings with shut times close to 0.5–0.6 msec, indicating that an individual Na+ channel may reopen several times during step depolarization. A systematic quantiative analysis in 19 cell-attached patches showed that reopening may be quite differently pronounced. The majority, namely 16 patches, contained Na+ channels with a low tendency to reopen. This was evidenced from the average value for the mean number of openings per sequence, 2.5. Strikingly different results were obtained in a second group of three patches. Here, a mean number of openings per sequence of 3.42, 3.72, and 5.68 was found. Ensemble averages from the latter group of patches revealed macroscopic Na+ currents with a biexponential decay phase. Reconstructed Na+ currents from patches with poorly reopening Na+ channels were devoid of a slow decay component. This strongly suggests that reopening may be causally related to slow Na+ inactivation. Poorly pronounced reopening and, consequently, the lack of slow Na+ inactivation could be characteristic features of neonatal cardiac Na+ channels.  相似文献   

14.
BACKGROUND AND AIM: The action potential plateau of Purkinje fibers is particularly sensitive to tetrodotoxin (TTX) and this could be due to a TXX-sensitive Na(+) current. The expression of TTX-sensitive neuronal Na(V)1.1 and Na(V)1.2 isoforms has been reported in canine Purkinje myocytes. Our aim was to investigate by means of biochemical and functional techniques whether the TTX-sensitive skeletal Na(V)1.4 isoform is also expressed in canine cardiac Purkinje myocytes. METHODS AND RESULTS: Using Na(V)1.4 specific primers, a PCR product corresponding to Na(V)1.4 was amplified from canine Purkinje fibers RNA and confirmed by sequencing and megablast of the gene bank. Confocal indirect immunostaining using anti-Na(V)1.4 antibody demonstrates distinct sarcolemmal staining pattern compared to that of the cardiac isoform Na(V)1.5. Expression of Na(V)1.4 in tsA201 cells yielded a TTX-sensitive Na(+) current with an IC(50) of 10nM. CONCLUSIONS: These results demonstrate the expression of the TTX-sensitive Na(V)1.4 channel in canine cardiac Purkinje myocytes. This novel finding suggests a role of Na(V)1.4 channel in Purkinje myocytes and thus has important clinical implications for the mechanisms and management of ventricular arrhythmias originating in the Purkinje network.  相似文献   

15.
In renal epithelial A6 cells, aldosterone applied for 24 h increased the transepithelial Cl- secretion over 30-fold due to activation of the Na+/K+/2Cl- cotransporter and stimulated the transepithelial Na+ absorption, activity of epithelial Na+ channel (ENaC), and alpha-ENaC mRNA expression. The stimulatory action of aldosterone on the transepithelial Na+ absorption, ENaC activity, and alpha-ENaC mRNA expression was diminished by 24h-pretreatment with quercetin (an activator of Na+/K+/2Cl- cotransporter participating in Cl- entry into the cytosolic space) or 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB) (a blocker of Cl- channel participating in Cl- release from the cytosolic space), while 24h-pretreatment with bumetanide (a blocker of Na+/K+/2Cl- cotransporter) enhanced the stimulatory action of aldosterone on transepithelial Na+ absorption. On the other hand, under the basal (aldosterone-unstimulated) condition, quercetin, NPPB or bumetanide had no effect on transepithelial Na+ absorption, activity of ENaC or alpha-ENaC mRNA expression. These observations suggest that although aldosterone shows overall its stimulatory action on ENaC (transepithelial Na+ transport), aldosterone has an inhibitory action on ENaC (transepithelial Na+ transport) via activation of the Na+/K+/2Cl- cotransporter, and that modification of activity of Cl- transporter/channel participating in the transepithelial Cl- secretion influences the aldosterone-stimulated ENaC (transepithelial Na+ transport).  相似文献   

16.
Proton-dependent, ethylisopropylamiloride (EIPA)-sensitive Na+ uptake (Na+/H+ antiporter) studies were performed to examine if saliva, and ionophores which alter cellular electrolyte balance, could influence the activity of the cheek cell Na+/H+ antiporter. Using the standard conditions of 1 mmol/1 Na+, and a 65:1 (inside:outside) proton gradient in the assay, the uniport ionophores valinomycin (K+) and gramicidin (Na+) increased EIPA-sensitive Na+ uptake by 177% (p < 0.01) and 227% (p < 0.01), respectively. The dual antiporter ionophore nigericin (K+-H+) increased EIPA-sensitive Na+ uptake by 654% (p < 0.01), with maximal Na+ uptake achieved by 1 min and at an ionophore concentration of 50 mol/l, with an EC 50 value 6.4 mol/l. Preincubation of cheek cells with saliva or the low molecular weight (MW) components of saliva (saliva activating factors, SAF) for 2 h at 37°C, also significantly stimulated EIPA-sensitive Na+ uptake. This stimulation could be mimicked by pre-incubation with 25 mmol/l KCl or K+-phosphate buffer. Pre-incubating cheek cells with SAF and the inclusion of 20 mol/1 nigericin in the assay, produced maximum EIPA-sensitive Na+ uptake. After pre-incubation with water, 25 mmol/1 K+-phosphate or SAF, with nigericin in all assays, the initial rate of proton-gradient dependent, EIPA-sensitive Na+ uptake was saturable with respect to external Na+ with Km values of 0.9, 1.7, and 1.8 mmol/l, and V max values of 13.4, 25.8, and 31.1 nmol/mg protein/30 sec, respectively. With 20 mol/1 nigericin in the assay, Na+ uptake was inhibited by either increasing the [K+]o in the assay, with an ID 50 of 3 mmol/l. These results indicate that nigericin can facilitate K+ i exchange for H+ o and the attending re-acidification of the cheek cell amplifies IINa+ uptake via the Na+/H+ antiporter. The degree of stimulation of proton-dependent, EIPA-sensitive Na+ uptake is therefore dependent, in part, on the intracellular K+ i.  相似文献   

17.
Summary We have analyzed the mechanism of Na+-dependent pHi; recovery from an acid load in A6 cells (an amphibian distal nephron cell line) by using the intracellular pH indicator 27-bis(2-carboxyethyl)5, 6 carboxyfluorescein (BCECF) and single cell microspectrofluorometry. A6 cells were found to express Na+/H+-exchange activity only on the basolateral membrane: Na+/H+-exchange activity follows simple saturation kinetics with an apparent K mfor Na+ of approximately 11 mm; it is inhibited in a competitive manner by ethylisopropylamiloride (EIPA). This Na+/H+-exchange activity is inhibited by pharmacological activation of protein kinase A (PKA) as well as of protein kinase C (PKC). Addition of arginine vasopressin (AVP) either at low (subnanomolar) or at high (micromolar) concentrations inhibits Na+/H+-exchange activity; AVP stimulates IP3 production at low concentrations, whereas much higher concentrations are required to stimualte cAMP formation. These findings suggest that in A6 cells (i) Na+/H+-exchange is located in the basolateral membrane and (ii) PKC activation (heralded by IP3 turnover) is likely to be the mediator of AVP action at low AVP concentrations.This work was supported by the Swiss National Science Foundation (Grant No. 32-30785.91), the Stiftung für wissenschaftliche Forschung an der Universität Zürich, the Hartmann-Müller Stiftung, the Sandoz-Stiftung, the Roche Research Foundation, and the Geigy Jubiläumsstiftung. Prof. Dr. V. Casavola and Dr. R. Guerra were supported by a research grant, No. 91.02470.CT14 of the Consiglio Nazionale della Ricerche (C.N.R.) We are grateful to Prof. Dr. B.C. Rossier of the Institute of Pharmacology of Lausanne (Switzerland) for the gift of the A6 cells, to H.P. Gaeggeler for the supply of the necessary culture media and to Jutka Forgo for her excellent help in the day-to-day culturing of the A6 cells. The secretarial assistance of D. Rossi is gratefully acknowledged.  相似文献   

18.
Using the two-microelectrode voltage clamp technique in Xenopus laevis oocytes, we estimated Na+-K+-ATPase activity from the dihydroouabain-sensitive current (I DHO) in the presence of increasing concentrations of tetraethylammonium (TEA+; 0, 5, 10, 20, 40 mm), a well-known blocker of K+ channels. The effects of TEA+ on the total oocyte currents could be separated into two distinct parts: generation of a nonsaturating inward current increasing with negative membrane potentials (V M) and a saturable inhibitory component affecting an outward current easily detectable at positive V M. The nonsaturating component appears to be a barium-sensitive electrodiffusion of TEA+ which can be described by the Goldman-Hodgkin-Katz equation, while the saturating component is consistent with the expected blocking effect of TEA+ on K+ channels. Interestingly, this latter component disappears when the Na+-K+-ATPase is inhibited by 10 m DHO. Conversely, TEA+ inhibits a component of I DHO with a k d of 25±4 mm at +50 mV. As the TEA+-sensitive current present in I DHO reversed at –75 mV, we hypothesized that it could come from an inhibition of K+ channels whose activity varies in parallel with the Na+-K+-ATPase activity. Supporting this hypothesis, the inward portion of this TEA+-sensitive current can be completely abolished by the addition of 1 mm Ba2+ to the bath. This study suggests that, in X. laevis oocytes, a close link exists between the Na-K-ATPase activity and TEA+-sensitive K+ currents and indicates that, in the absence of effective K+ channel inhibitors, I DHO does not exclusively represent the Na+-K+-ATPase-generated current.  相似文献   

19.
Blocking either the Na+ channel or the Na+/H+ exchanger (NHE) has been shown to reduce Na+ and Ca2+ overload during myocardial ischemia and reperfusion, respectively, and to improve post-ischemic contractile recovery. The effect of combined blockade of both Na+ influx routes on ionic homeostasis is unknown and was tested in this study. [Na+]i, pHi and energy-related phosphates were measured using simultaneous 23Na- and 31P-NMR spectroscopy in isolated rat hearts. Eniporide (3 μM) and/or lidocaine (200 μM) were administered during 5 min prior to 40 min of global ischemia and 40 min of drug free reperfusion to block the NHE and the Na+ channel, respectively. Lidocaine reduced the rise in [Na+]i during the first 10 min of ischemia, followed by a rise with a rate similar to the one found in untreated hearts. Eniporide reduced the ischemic Na+ influx during the entire ischemic period. Administration of both drugs resulted in a summation of the effects found in the lidocaine and eniporide groups. Contractile recovery and infarct size were significantly improved in hearts treated with both drugs, although not significantly different from hearts treated with either one of them.  相似文献   

20.
Previous impedance analysis studies of intact epithelia have been complicated by the presence of connective tissue or smooth muscle. We now report the first application of this method to cultured epithelial monolayers. Impedance analysis was used as a nondestructive method for deducing quantitative morphometric parameters for epithelia grown from the renal cell line A6, and its subclonal cell line 2F3. The subclonal 2F3 cell line was chosen for comparison to A6 because of its inherently higher Na+ transport rate. In agreement with previous results, 2F3 epithelia showed significantly higher amiloride-sensitive short-circuit currents (Isc) than A6 epithelia (44 +/- 2 and 27 +/- 2 microA/cm2, respectively). However, transepithelial conductances (GT) were similar for the two epithelia (0.62 +/- 0.04 mS/cm2 for 2F3 and 0.57 +/- 0.04 mS/cm2 for A6) because of reciprocal differences in cellular (Gc) and paracellular (Gj) conductances. Significantly lower Gj and higher Gc values were observed for 2F3 epithelia than A6 (Gj = 0.23 +/- 0.02 and 0.33 +/- 0.04 mS/cm2 and Gc = 0.39 +/- 0.16 and 0.26 +/- 0.10 mS/cm2, respectively). Nonetheless, the cellular driving force for Na+ transport (Ec) and the amount of transcellular Na+ current under open-circuit conditions (Ic) were similar for the two epithelia. Three different morphologically-based equivalent circuit models were derived to assess epithelial impedance properties: a distributed model which takes into account the resistance of the lateral intercellular space and two models (the "dual-layer" and "access resistance" models), which corrected for impedance of small fluid-filled projections of the basal membrane into the underlying filter support. Although the data could be fitted by the distributed model, the estimated value for the ratio of apical to basolateral membrane resistances was unreasonably large. In contrast, the other models provided statistically superior fits and reasonable estimates of the membrane resistance ratio. The dual-layer model and access resistance models also provided similar estimates of apical and basolateral membrane conductances and capacitances. In addition, both models provided new information concerning the conductance and area of the basolateral protrusions. Estimates of the apical membrane conductance were significantly higher for 2F3 (0.79 +/- 0.23 mS/cm2) than A6 epithelia (0.37 +/- 0.07 mS/cm2), but no significant difference could be detected for apical membrane capacitances (1.4 +/- 0.04 and 1.2 +/- 0.1 microF/cm2 for 2F3 and A6, respectively) or basolateral membrane conductances (3.48 +/- 1.67 and 2.95 +/- 0.40 mS/cm2). The similar basolateral membrane properties for the two epithelia may be explained by their comparable transcellular Na+ currents under open-circuit conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号