首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several diseases are characterized by changes in the molecular composition of vascular structures, thus offering the opportunity to use specific ligands (e.g., monoclonal antibodies) for imaging and therapy application. This novel pharmaceutical strategy, often referred to as “vascular targeting”, promises to facilitate the discovery and development of selective biopharmaceuticals for the management of angiogenesis-related diseases. This article reviews novel biomedical applications based on vascular targeting strategies, as well as methodologies which have been used for the discovery of vascular markers of pathology.  相似文献   

2.
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use selections are performed against pre-defined targets, the use of cell lines, tissue, and in vivo homing selections have also been valuable. These latter strategies avoid the need to identify a specific target at the outset, allow library selections under conditions potentially more relevant to a clinical setting, and can lead to the discovery of unanticipated and interesting targets. The full potential of phage display is far from being completely explored; many library formats and selection strategies have not been fully exploited for the production of molecular imaging agents. The successful and rapid translation of phage-derived molecular imaging agents into the clinic remains a challenge, but new methods and tools are becoming available for optimizing in vivo performance. In conclusion, phage display will continue to be a significant driving force and a key player in enabling in vivo molecular imaging to deliver on its promise for both basic science and clinical applications.  相似文献   

3.
The development of optical probes is receiving considerable attention due to their rising adaptation in diagnostics and medical imaging. Diversity-oriented approaches make use of combinatorial chemistry and high-throughput screenings to enrich the spectral and structural variety of these probes and effectively identify those with specific properties (e.g. molecular affinity, cellular selectivity, high photostability, and sensitivity). Herein we review recent examples in which diversity-driven strategies have assisted the discovery of new molecular imaging probes.  相似文献   

4.
G-protein-coupled receptors (GPCRs) are valuable molecular targets for drug discovery. An important aspect of the early drug discovery process is the design and implementation of high-throughput GPCR functional assays that allow the cost-effective screening of large compound libraries to identify novel drug candidates. Several functional assay kits based on fluorescence and/or chemiluminescence detection are commercially available for convenient screen development, each having advantages and disadvantages. In addition, new GPCR biosensors and high-content imaging technologies have recently been developed that hold promise for the development of functional GPCR screens in living cells.  相似文献   

5.
Molecular imaging is expected to change the face of drug discovery and development. The ability to link imaging to biology for guiding therapy should improve the rate at which novel imaging technologies, probes, contrast agents, drugs and drug delivery systems can be transferred into clinical practice. Nuclear medicine imaging, in particular, positron emission tomography (PET) allows the detection and monitoring of a variety of biological and pathophysiological processes, at tracer quantities of the radiolabelled target agents, and at doses free from pharmacological effects. In the field of drug discovery and development, the use of radiotracers for radiolabelling target agents has now become one of the essential tools in identifying, screening and development of new target agents. In this regard, (64)Cu (t(1/2)=12.7 h) has been identified as an emerging PET isotope. Its half-life is sufficiently long for radiolabelling a range of target agents and its ease of production and adaptable chemistry make it an excellent radioisotope for use in molecular imaging. This review describes recent advances, in the routes of (64)Cu production, design and application of bi-functional ligands for use in radiolabelling with (64/67)Cu(2+), and their significance and anticipated impact on the field of molecular imaging and drug development.  相似文献   

6.
The Human Proteome Project stands to eclipse the Human Genome Project in terms of scope, content and interpretation. Its outputs, in conjunction with recent developments across the proteomics community, provide new tools for cancer research with the potential of providing clinically relevant insights into the disease. These collectively may guide the development of future diagnosis, surveillance and treatment strategies. Having established a robust organizational framework within the international community, the Human Proteome Organization and the proteomics community at large have made significant advances in biomarker discovery, detection, molecular imaging and in exploring tumor heterogeneity. Here, the authors discuss some developments in cancer proteomics and how they can be implemented to reduce the global burden of the disease.  相似文献   

7.
Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis.  相似文献   

8.
Mass Spectrometric Imaging (MSI) is a molecular imaging technique that allows the generation of 2D ion density maps for a large complement of the active molecules present in cells and sectioned tissues. Automatic segmentation of such maps according to patterns of co-expression of individual molecules can be used for discovery of novel molecular signatures (molecules that are specifically expressed in particular spatial regions). However, current segmentation techniques are biased toward the discovery of higher abundance molecules and large segments; they allow limited opportunity for user interaction, and validation is usually performed by similarity to known anatomical features. We describe here a novel method, AMASS (Algorithm for MSI Analysis by Semi-supervised Segmentation). AMASS relies on the discriminating power of a molecular signal instead of its intensity as a key feature, uses an internal consistency measure for validation, and allows significant user interaction and supervision as options. An automated segmentation of entire leech embryo data images resulted in segmentation domains congruent with many known organs, including heart, CNS ganglia, nephridia, nephridiopores, and lateral and ventral regions, each with a distinct molecular signature. Likewise, segmentation of a rat brain MSI slice data set yielded known brain features and provided interesting examples of co-expression between distinct brain regions. AMASS represents a new approach for the discovery of peptide masses with distinct spatial features of expression. Software source code and installation and usage guide are available at http://bix.ucsd.edu/AMASS/ .  相似文献   

9.
N G Larsson  R Luft 《FEBS letters》1999,455(3):199-202
A revolution in chemical pathology occurred about 40 years ago with the discovery of a patient with mitochondrial dysfunction. The field of mitochondrial medicine has experienced explosive growth during the last decade. More than 50 mtDNA mutations and several nuclear gene mutations have been identified in affected patients. The recent development of animal models will continue the revolution in mitochondrial medicine by facilitating in depth studies of the molecular pathogenesis and development of novel drug and gene therapy strategies for mitochondrial dysfunction. As we enter the next millennium, we can expect mitochondrial medicine to remain a dynamic and rapidly developing field.  相似文献   

10.
Comparative analyses of fungal genomes and molecular research on genes associated with fungal viability and virulence has led to the identification of many putative targets for novel antifungal agents. So far the rational approach to antifungal discovery, in which compounds are optimized against an individual target then progressed to efficacy against intact fungi and ultimately to infected humans has delivered no new agents. However, the approach continues to hold promise for the future. This review critically assesses the molecular target-based approach to antifungal discovery, outlines problems and pitfalls inherent in the genomics and target discovery strategies and describes the status of heavily investigated examples of target-based research.  相似文献   

11.
12.
The efficacy of all major insecticide classes continues to be eroded by the development of resistance mediated, in part, by selection of alleles encoding insecticide insensitive target proteins. The discovery of new insecticide classes acting at novel protein binding sites is therefore important for the continued protection of the food supply from insect predators, and of human and animal health from insect borne disease. Here we describe a novel class of insecticides (Spiroindolines) encompassing molecules that combine excellent activity against major agricultural pest species with low mammalian toxicity. We confidently assign the vesicular acetylcholine transporter as the molecular target of Spiroindolines through the combination of molecular genetics in model organisms with a pharmacological approach in insect tissues. The vesicular acetylcholine transporter can now be added to the list of validated insecticide targets in the acetylcholine signalling pathway and we anticipate that this will lead to the discovery of novel molecules useful in sustaining agriculture. In addition to their potential as insecticides and nematocides, Spiroindolines represent the only other class of chemical ligands for the vesicular acetylcholine transporter since those based on the discovery of vesamicol over 40 years ago, and as such, have potential to provide more selective tools for PET imaging in the diagnosis of neurodegenerative disease. They also provide novel biochemical tools for studies of the function of this protein family.  相似文献   

13.
Defining key driver mutations in cancer, the resulting aberrations in molecular mechanisms and the subsequent phenotype underpins the development and implementation of novel personalized medicine strategies. The literature is replete with biomarkers of prognosis and therapeutic responsiveness identified in single cohorts of patients that have not been independently validated and as a consequence, not developed. Integrating companion biomarker discovery with therapeutic development at the preclinical stage creates the opportunity to identify candidate biomarkers early, which would significantly facilitate both biomarker and therapeutic development. Advances in “-omic” technologies have led to large-scale efforts in characterizing and cataloguing the full range of aberrations in cancer. These include the International Cancer Genome Consortium and The Cancer Genome Atlas, which aim to comprehensively catalogue the range of genomic aberrations for large numbers of cancers for a progressively increasing range of cancer types and subtypes. The technical challenges associated with achieving these goals in some instances have required the generation of primary xenografts and cell lines. These extensively characterized model systems will provide an unprecedented resource for the discovery of biomarkers of therapeutic responsiveness for established therapies, and the development of companion biomarkers linked with preclinical novel therapeutic development in the future.  相似文献   

14.

Background

Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, typically presenting with metastasis at the time of diagnosis and exhibiting profound resistance to existing therapies. The development of molecular markers and imaging probes for incipient PDAC would enable earlier detection and guide the development of interventive therapies. Here we sought to identify novel molecular markers and to test their potential as targeted imaging agents.

Methods and Findings

Here, a phage display approach was used in a mouse model of PDAC to screen for peptides that specifically bind to cell surface antigens on PDAC cells. These screens yielded a motif that distinguishes PDAC cells from normal pancreatic duct cells in vitro, which, upon proteomics analysis, identified plectin-1 as a novel biomarker of PDAC. To assess their utility for in vivo imaging, the plectin-1 targeted peptides (PTP) were conjugated to magnetofluorescent nanoparticles. In conjunction with intravital confocal microscopy and MRI, these nanoparticles enabled detection of small PDAC and precursor lesions in engineered mouse models.

Conclusions

Our approach exploited a well-defined model of PDAC, enabling rapid identification and validation of PTP. The developed specific imaging probe, along with the discovery of plectin-1 as a novel biomarker, may have clinical utility in the diagnosis and management of PDAC in humans.  相似文献   

15.
The discovery and development of novel drugs for the multitude of targets originating from functional genomic research is a challenging task. While antibodies can nowadays be raised against virtually any given target using phage-display methodologies, a similar "selection/amplification" approach for the facile discovery of low-molecular weight compounds capable of specific binding to protein targets of choice has so far been lacking. The development of DNA-encoded chemical libraries, combined with suitable selection and high-throughput sequencing strategies, holds promises to fill this gap. Here, we review the latest developments in the field of DNA-encoded chemical libraries, commenting on the challenges and opportunities for the different experimental strategies in this rapidly evolving research area, which may gain importance for the future drug discovery process.  相似文献   

16.
Biomedical applications of protein chips   总被引:2,自引:0,他引:2  
The development of microchips involving proteins has accelerated within the past few years. Although DNA chip technologies formed the precedent, many different strategies and technologies have been used because proteins are inherently a more complex type of molecule. This review covers the various biomedical applications of protein chips in diagnostics, drug screening and testing, disease monitoring, drug discovery (proteomics), and medical research. The proteomics and drug discovery section is further subdivided to cover drug discovery tools (on-chip separations, expression profiling, and antibody arrays), molecular interactions and signaling pathways, the identification of protein function, and the identification of novel therapeutic compounds. Although largely focused on protein chips, this review includes chips involving cells and tissues as a logical extension of the type of data that can be generated from these microchips.  相似文献   

17.
Molecular imaging is a valuable tool in drug discovery and development, early screening and diagnosis of diseases, and therapy assessment among others. Although many different imaging modalities are in use today, molecular imaging with computed tomography (CT) is still challenging owing to its low sensitivity and soft tissue contrast compared with other modalities. Recent technical advances, particularly the introduction of spectral photon-counting detectors, might allow overcoming these challenges. Herein, the fundamentals and recent advances in CT relevant to molecular imaging are reviewed and potential future preclinical and clinical applications are highlighted. The review concludes with a discussion of potential future advancements of CT for molecular imaging.  相似文献   

18.
Recent advances in oncology have lead to identification of a plethora of alterations in signaling pathways that are critical to oncogenesis and propagation of malignancy. Among the biomarkers identified, dysregulated kinases and associated changes in signaling cascade received the lion's share of scientific attention and have been under extensive investigations with goal of targeting them for anti-cancer therapy. Discovery of new drugs is immensely facilitated by molecular imaging technology which enables non-invasive, real time, dynamic imaging and quantification of kinase activity. Here, we review recent development of novel kinase reporters based on conformation dependent complementation of firefly luciferase to monitor kinase activity. Such reporter system provides unique insights into the pharmacokinetics and pharmacodynamics of drugs that modulate kinase signaling and have a huge potential in drug discovery, validation, and drug-target interactions.  相似文献   

19.
In recent years, biopharmaceutical drug products have become hugely successful. However, they are often complex molecules that are expensive to manufacture. Commercial needs for cost-effective therapies have therefore led to the development of novel protein scaffold technologies that are increasingly being used for biopharmaceutical drug discovery. Major new scaffolds include single-domain antibodies, small modular immunopharmaceuticals, tetranectins, AdNectins, A-domain proteins, lipocalins and ankyrin repeat proteins. These scaffolds offer low-cost alternatives to classical antibody therapeutic strategies and some have shown early clinical promise. Further progress in the field will permit the commercially successful development of sophisticated protein therapeutics against complex disease targets.  相似文献   

20.
Inhibiting hypoxia-inducible factor 1 for cancer therapy   总被引:7,自引:0,他引:7  
Hypoxia has long been recognized as a common feature of solid tumors and a negative prognostic factor for response to treatment and survival of cancer patients. The discovery of hypoxia-inducible factor 1 (HIF-1), a molecular determinant of the response of mammalian cells to hypoxia, has led to the identification of a "molecular target" of hypoxia suitable for the development of cancer therapeutics. Early controversy about whether or not HIF-1 is a good target for therapy has not discouraged academic groups and pharmaceutical companies from actively engaging in the discovery of small-molecule inhibitors of HIF. However, what is the best strategy to inhibit HIF and how HIF inhibitors should be developed for treatment of human cancers is still poorly defined. In this review, aspects related to the identification and early development of novel HIF inhibitors are discussed. Identification and validation of pharmacodynamic end points relevant to the HIF-1 pathway is essential for a rational development of HIF inhibitors. Integration of these biomarkers in early clinical trials may provide valuable information to determine the contribution of HIF inhibitors to response to therapy. Finally, HIF inhibitors should be incorporated in combination strategies to effectively target multiple cellular components of the tumor microenvironment and redundant signaling pathways frequently deregulated in human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号