首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Predicted threshold against backward balance loss following a slip in gait   总被引:1,自引:1,他引:0  
The purpose of this study was to use a 7-link, moment-actuated human model to predict, at liftoff of the trailing foot in gait, the threshold of the center of mass (COM) velocity relative to the base of support (BOS) required to prevent backward balance loss during single stance recovery from a slip. Five dynamic optimization problems were solved to find the minimum COM velocities that would allow the simulation to terminate with the COM above the BOS when the COM started 0.25, 0.5, 0.75, 1.0, and 1.25 foot lengths behind the heel of the stance foot (i.e., behind the BOS). The initial joint angles of the model were based on averaged data from experimental trials. Foot-ground contact was modeled using 16 visco-elastic springs distributed under the stance foot. Slipping was modeled by setting the sliding coefficient of friction of these springs to 0.02. The forward velocity of the COM necessary to avoid a backward balance loss is nearly two times larger under slip conditions under non-slip conditions. The predicted threshold for backward balance loss following a slip agreed well with experimental data collected from 99 young adults in response to 927 slips during walking. In all trials in which a subject's COM had a velocity below the predicted threshold, the subject's recovery foot landed posterior to the slipping foot as predicted. Finally, combining experimental data with optimization, we verified that the 7-link model could more accurately predict gait stability than a 2-link model.  相似文献   

2.
The biomechanical mechanisms of loss of balance have been studied before for slip condition but have not been investigated for arbitrary perturbation profiles under non-slip conditions in sagittal plane. This study aimed to determine the thresholds of center of mass (COM) velocity and position relative to the base of support (BOS) that predict forward and backward loss of balance during walking with a range of BOS perturbations. Perturbations were modeled as sinusoidal BOS motions in the vertical or anterior-posterior direction or as sagittal rotation. The human body was modeled using a seven-link model. Forward dynamics alongside with dynamic optimization were used to find the thresholds of initial COM velocity for each initial COM position that would predict forward or backward loss of balance. The effects of perturbation frequency and amplitude on these thresholds were modeled based on the simulation data. Experimental data were collected from 15 able-bodied individuals and three individuals with disability during perturbed walking. The simulation results showed similarity with the stability region reported for slip and non-slip conditions. The feasible stability region shrank when the perturbation frequency and amplitude increased, especially for larger initial COM velocities. 89.5% (70.9%) and 82.4% (68.2%) of the measured COM position and velocity combinations during low (high) perturbations were located inside the simulated limits of the stability region, for able-bodied and disabled individuals, respectively. The simulation results demonstrated the effects of different perturbation levels on the stability region. The obtained stability region can be used for developing rehabilitative programs in interactive environments.  相似文献   

3.
The unilateral predominance of Parkinson’s disease (PD) symptoms suggests that balance control could be asymmetrical during static tasks. Although studies have shown that balance control asymmetries exist in patients with PD, these analyses were performed using only simple bipedal standing tasks. Challenging postural tasks, such as unipedal or tandem standing, could exacerbate balance control asymmetries. To address this, we studied the impact of challenging standing tasks on postural control asymmetry in patients with PD. Twenty patients with PD and twenty neurologically healthy individuals (control group) participated in this study. Participants performed three 30s trials for each postural task: bipedal, tandem adapted and unipedal standing. The center of pressure parameter was calculated for both limbs in each of these conditions, and the asymmetry between limbs was assessed using the symmetric index. A significant effect of condition was observed, with unipedal standing and tandem standing showing greater asymmetry than bipedal standing for the mediolateral root mean square (RMS) and area of sway parameters, respectively. In addition, a group*condition interaction indicated that, only for patients with PD, the unipedal condition showed greater asymmetry in the mediolateral RMS and area of sway than the bipedal condition and the tandem condition showed greater asymmetry in the area of sway than the bipedal condition. Patients with PD exhibited greater asymmetry while performing tasks requiring postural control when compared to neurologically healthy individuals, especially for challenging tasks such as tandem and unipedal standing.  相似文献   

4.
Dynamic gait stability can be quantified by the relationship of the motion state (i.e. the position and velocity) between the body center of mass (COM) and its base of support (BOS). Humans learn how to adaptively control stability by regulating the absolute COM motion state (i.e. its position and velocity) and/or by controlling the BOS (through stepping) in a predictable manner, or by doing both simultaneously following an external perturbation that disrupts their regular relationship. Post repeated-slip perturbation training, for instance, older adults learned to forward shift their COM position while walking with a reduced step length, hence reduced their likelihood of slip-induced falls. How and to what extent each individual joint influences such adaptive alterations is mostly unknown. A three-dimensional individualized human kinematic model was established. Based on the human model, sensitivity analysis was used to systematically quantify the influence of each lower limb joint on the COM position relative to the BOS and the step length during gait. It was found that the leading foot had the greatest effect on regulating the COM position relative to the BOS; and both hips bear the most influence on the step length. These findings could guide cost-effective but efficient fall-reduction training paradigm among older population.  相似文献   

5.
6.
The need to initiate a step in order to recover balance could, in theory, be predicted by a static model based solely on displacement of the center of mass (COM) with respect to the base of support (BOS), or by a dynamic model based on the interaction between COM displacement and velocity. The purpose of this study was to determine whether the dynamic model provides better prediction than the static model regarding the need to step in response to moving-platform perturbation. The COM phase plane trajectories were determined for 10 healthy young adults for trials where the supporting platform was translated at three different acceleration levels in anterior and posterior directions. These trajectories were compared with the thresholds for step initiation predicted by the static and dynamic COM models. A single-link-plus-foot biomechanical model was employed to mathematically simulate termination of the COM movement, without stepping, using the measured platform acceleration as the input. An optimization routine was used to determine the stability boundaries in COM state space so as to establish the dynamic thresholds where a compensatory step must be initiated in order to recover balance. In the static model, the threshold for step initiation was reached if the COM was displaced beyond the BOS limits. The dynamic model showed substantially better accuracy than the static model in predicting the need to step in order to recover balance: 71% of all stepping responses predicted correctly by the dynamic model versus only 11% by the static model. These results support the proposition that the central nervous system must react to and control dynamic effects, i.e. COM velocity, as well as COM displacement in order to maintain stability with respect to the existing BOS without stepping.  相似文献   

7.
The transition among hominids from quadrupedalism to bipedalism resulted in modifications in their musculoskeletal morphology. It is unclear, however, whether changes in the circuitry of the CNS were also necessary in order to accommodate the unique balance requirements of two-limb support. This study addresses the issue of modifications in control strategies by investigating the rapid, automatic postural responses of feline and human subjects to sudden disturbances of balance in the anteroposterior (AP) direction while they stand quadrupedally and bipedally on movable platforms. Postural responses are characterized in terms of segmental adjustments, generated AP shear forces, and electromyographic activity. Feline and human subjects correct posture similarly when standing quadrupedally. Furthermore, both species correct stance primarily with their hindlimbs and use their forelimbs as supportive struts. In contrast, both species use completely different correctional strategies when standing bipedally. Morphological restrictions, however, prevent cats from adopting the pillar-like plantigrade posture of human beings. Thus, the correctional strategies of bipedal cats are distinct from those of bipedal human subjects. It is concluded that 1) automatic postural response patterns of quadrupedal Felis and bipedal Homo reflect the different biomechanical characteristics of the initial postures rather than species differences in CNS circuitry controlling stance; 2) hindlimb-dominated posture control is probably a common and relatively ancient pattern; and 3) reorganization of hominid CNS circuitry was probably unnecessary because hindlimb control was already a feature of the system.  相似文献   

8.
Can the center of mass (COM) motion state, i.e., its position and velocity relative to the base of support (BOS), which dictate gait stability, be predictably controlled by the global gait parameters of step length and gait speed, or by extension, cadence? The precise relationships among step length and gait speed, and the COM motion state are unknown, partially due to the interdependence between step length and gait speed and the difficulty in independent control of both parameters during spontaneous level walking. The purposes of this study were to utilize simultaneous audio-visual cuing to independently manipulate step length and gait speed, and to determine the extent to which the COM position and velocity can be subsequently controlled. Fifty-six young adults were trained at one of the three gait patterns in which both the step length and gait speed were targeted simultaneously. The results showed that the cuing could successfully “decouple” gait speed from step length. Although this approach did yield reliable control of the COM velocity through manipulation of gait speed (R2=0.97), the manipulation of step length yielded less precise control of COM position (R2=0.60). This latter control appears to require manipulation of an additional degree-of-freedom at the local segment level, such that the inclusion of trunk inclination with step length improved the prediction of COM position (R2=0.80).  相似文献   

9.
While perturbation training is promising in reducing fall-risk among older adults, its impact on altering their spontaneous gait pattern has not been investigated. The purpose of this study was to determine to what extent older adults' gait pattern would be affected by exposure to repeated slips. Seventy-three community-dwelling older adults (age: 72.6±5.4 years) underwent 24 repeated-slip exposure induced by unannounced unlocking and relocking of low-friction sections of a 7-m pathway upon which they walked. Full body kinematics and kinetics were recorded during the training. The gait parameters and the center of mass (COM) stability against backward balance loss were compared before and after the training. The results revealed that the training reduced fall incidence from 43.8% upon the novel slip to 0 at the end of training. After the training, subjects significantly improved gait stability by forward positioning of their COM relative to the base of support without altering gait speed. This forward COM shift resulted from a shortened step at the end of single stance and forward trunk leaning during double stance. They also adopted flat foot landing with knee flexed at touchdown (with an average change of 6.9 and 4.1 degrees, respectively). The perturbation training did alter community-dwelling older adults' spontaneous gait pattern. These changes enabled them to improve their volitional control of stability and their resistance to unpredictable and unpreventable slip-related postural disturbance.  相似文献   

10.
Standing and walking balance control in humans relies on the transformation of sensory information to motor commands that drive muscles. Here, we evaluated whether sensorimotor transformations underlying walking balance control can be described by task-level center of mass kinematics feedback similar to standing balance control. We found that delayed linear feedback of center of mass position and velocity, but not delayed linear feedback from ankle angles and angular velocities, can explain reactive ankle muscle activity and joint moments in response to perturbations of walking across protocols (discrete and continuous platform translations and discrete pelvis pushes). Feedback gains were modulated during the gait cycle and decreased with walking speed. Our results thus suggest that similar task-level variables, i.e. center of mass position and velocity, are controlled across standing and walking but that feedback gains are modulated during gait to accommodate changes in body configuration during the gait cycle and in stability with walking speed. These findings have important implications for modelling the neuromechanics of human balance control and for biomimetic control of wearable robotic devices. The feedback mechanisms we identified can be used to extend the current neuromechanical models that lack balance control mechanisms for the ankle joint. When using these models in the control of wearable robotic devices, we believe that this will facilitate shared control of balance between the user and the robotic device.  相似文献   

11.
To examine the control of dynamic stability and characteristics of the compensatory stepping responses to an unexpected anterior gait slip induced under the non-involved limb in people with hemi-paretic stroke (PwHS) and to examine any resulting adaptive changes in these on the second slip due to experience from prior slip exposure. Ten PwHS experienced overground slip (S1) during walking on the laboratory walkway after 5–8 regular walking (RW) trials followed by a second consecutive slip trial (S2). The slip outcome (backward loss of balance, BLOB and no loss of balance, NLOB) and COM state (i.e. its COM position and velocity) stability were examined between the RW and S1 and S1 and S2 at touchdown (TD) of non-involved limb and at liftoff (LO) of the contralateral limb. At TD there was no difference in stability between RW and S1, however at LO, subjects demonstrated a lower stability on S1 than RW resulting in a 100% backward loss of balance (BLOB) with compensatory stepping response (recovery step, RS, 4/10 or aborted step, AS, 6/10). On S2, although there was no change in stability at TD, there was a significant improvement in stability at LO with a 40% decrease in BLOB. There was also a change in step strategy with a decrease in AS response (60% to 35%, p<0.05) which was replaced by an increase in the ability to step (increased compensatory step length, p<0.05) either via a recovery step or a walkover step. PwHS have the ability to reactively control COM state stability to decrease fall-risk upon a novel slip; prior exposure to a slip did not significantly alter feedforward control but improved the ability to use such feedback control for improved slip outcomes.  相似文献   

12.
In this paper six theories of bipedal walking, and the evidence in support of the theories, are reviewed. They include: evolution, minimising energy consumption, maturation in children, central pattern generators, linking control and effect, and robots on two legs. Specifically, the six theories posit that: (1) bipedalism is the fundamental evolutionary adaptation that sets hominids--and therefore humans--apart from other primates; (2) locomotion is the translation of the centre of gravity along a pathway requiring the least expenditure of energy; (3) when a young child takes its first few halting steps, his or her biomechanical strategy is to minimise the risk of falling; (4) a dedicated network of interneurons in the spinal cord generates the rhythm and cyclic pattern of electromyographic signals that give rise to bipedal gait; (5) bipedal locomotion is generated through global entrainment of the neural system on the one hand, and the musculoskeletal system plus environment on the other; and (6) powered dynamic gait in a bipedal robot can be realised only through a strategy which is based on stability and real-time feedback control. The published record suggests that each of the theories has some measure of support. However, it is important to note that there are other important theories of locomotion which have not been covered in this review. Despite such omissions, this odyssey has explored the wide spectrum of bipedal walking, from its origins through to the integration of the nervous, muscular and skeletal systems.  相似文献   

13.
The current biomechanical interpretation of the chimpanzee's bipedal walking argues that larger lateral and vertical displacements of the body center of mass occur in the chimpanzee's “side-to-side” gait than in the human striding gait. The evolutionary hypothesis underlying this study is the following: during the evolution of human bipedalism one of the necessary changes could have been the progressive reduction of these displacements of the body center of mass. In order to quantitatively test this hypothesis, it is necessary to obtain simultaneously the trajectories of the centers of mass of the whole body and of the different body parts. To solve this problem, a new method of three-dimensional analysis of walking, associated with a volumetric modelling of the body, has been developed based on finite-element modelling. An orthogonal synchrophotographic device yielding four synchronous pictures of the walking subject allows a qualitative analysis of the photographic sequences together with the results of their quantitative analysis. This method was applied to an adult man, a 3-year-old girl and a 9-year-old male chimpanzee. Our results suggest that the trajectory of the body center of mass of the human is distinguished from that of the chimpanzee not by a lower movement amplitude but by the synchronization of the transverse and vertical displacements into two periodic curves in phase with one another. The non-human primate uses its repertoire of arboreal movements in its bipedal terrestrial gait, provisionally referred to as a “rope-walker” gait. We show that the interpretation of a “side-to-side” gait is not applicable to the chimpanzee. We argue that similarly this interpretation and the initial hypothesis presuppose a basic symmetric structure of the gait, in relation to the sagittal plane of progression, similar to the human one. This lateral symmetry of the right and left displacements of the center of gravity, in phase with the right and left single supports of walking, is probably a very derived feature of the human gait. We suggest that low lateral and vertical displacements of the body center of mass are not indicative of a progressive bipedal gait and we discuss the new evolutionary implications of our results. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Slipping during various kinds of movement often leads to potentially dangerous incidents of falling. The purpose of this study was to determine whether there was evidence to support the theory that movement strategies could be used by individuals to regain stability during an episode of slipping and whether forced sliding from a moving platform accurately simulated the effect of slipping on stability and balance. A single-link-plus-foot biomechanical model was used to mathematically simulate base of support (BOS) translation and body segment rotation during movement termination in sagittal plane. An optimization routine was used to determine region of stability [defined at given COM locations as the feasible range of horizontal velocities of the center of mass (COM) of human subject that can be reduced to zero with respect to the BOS while still allowing the COM to traverse within the BOS limits]. We found some 30% overlap in the region of stability for slipping and non-slipping conditions. This finding supports the theory that movement strategies can be sought for restoring stability and balance even if slipping unexpectedly occurs. We also found that forced sliding produces effects on stability that are similar to those of slipping, indicated by over 50% overlap in the regions of stability for the two conditions. In addition, forced sliding has distinctive effects on stability, including a "shift" of the region of stability extended beyond the BOS in the direction of sliding. These findings may provide quantifiable guidance for balance training aimed at reducing fall incidents under uncertain floor surface conditions.  相似文献   

15.
Iqbal K  Pai Y 《Journal of biomechanics》2000,33(12):3446-1627
Earlier experimental studies on balance recovery following perturbation have identified two discrete strategies commonly employed by humans, i.e. hip and ankle strategies. It has hence been implied that the knee joint plays a relatively minor role in balance recovery. The purpose of this study was to determine whether the size of the feasible stability region (FSR) would be affected by allowing knee motion in sagittal plane movement termination. The FSR was defined as the feasible range of anterior velocities of the center of mass (COM) of a human subject that could be reduced to zero with the final COM position within the base of support (BOS) limits. The FSR was computed using a four-segment biomechanical model and optimization routine based on Simulated Annealing algorithm for three scenarios: unrestricted knee motion (UK), restricted knee motion (RK), and unrestricted knee motion with an initial posture that matches RK (UKM). We found that movement termination could benefit little from UK condition when the COM (xCOM) was initially located in the forefoot region [0.00 (toe) >xCOM−0.50 (mid-foot)] with no more than a 17% increase in FSR compared to RK. The effect of knee motion increased in the rear foot region with a 25% increase in FSR at xCOM=−1 (heel). Close to half of this difference (12%) was attributable to the knee-related restriction on initial posture and the rest to movement termination per se. These findings illustrated a theoretical role of knee motion in standing humans’ repertoire of effective posture responses, which include hip and ankle strategies and their variants for balance recovery with stationary BOS.  相似文献   

16.
To question the relation between uni-and bipedal postural skills, 21 subjects were required to stand on a force platform through uni- and bipedal conditions. These two protocols are commonly used paradigms to assess the balance capacities of healthy and disabled patients. The recorded displacements of the center of pressure (CP) were decomposed along mediolateral and anteroposterior axes and assessed through variance positions and parameters obtained from fractional Brownian motion (fBm) modeling to determine the nature and the spatiotemporal organization of the successive controlling mechanisms. The variances underline the relative independence of the two tasks. Nevertheless, as highlighted by the fBm framework, postural correction is initiated for the unipedal stance after shorter time delays and longer covered distances. When compared to bipedal standing, one of the main characteristics of unipedal standing is to induce better-controlled CP trajectories, as deduced from the scaling regimes computed from the fBm modeling. Lastly, the control of the CP trajectories during the shortest time intervals along the anteroposterior axis appears identical for both uni- and bipedal conditions. Unipedal and bipedal standing controls should thus be viewed as two complementary tasks, each providing specific and complementary insights into the postural control organization.  相似文献   

17.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
A randomized controlled trial was conducted to compare the effect of a one-leg standing exercise and a chair-rising exercise on body balance in patients with locomotive disorders. Thirty ambulatory patients (mean age: 66.6 years) were randomly divided into two groups (n=15 in each group): a one-leg standing exercise group and a chair-rising exercise group. All the participants performed calisthenics of the major muscles, a tandem gait exercise, and a stepping exercise. The exercises were performed 3 days per week, and the study period was 5 months. Physical function was evaluated at baseline and at one-month intervals. No significant differences in the baseline characteristics were observed between the two groups. After the 5-month exercise program, the timed up and go, one-leg standing time, and tandem gait time improved significantly in the one-leg standing exercise group, while the walking time and chair-rising time in addition to above parameters improved significantly in the chair-rising exercise group. The improvements in the walking time, chair-rising time, and tandem gait time were significantly greater in the chair-rising exercise group than in the one-leg standing exercise group. The present study showed that the chair-rising exercise was more effective than the one-leg standing exercise for improving walking velocity and dynamic body balance.  相似文献   

19.
The aim of study was to investigate static balance control in wrestlers (n = 31) and effects of fatigue on postural regulation in two position: bipedal stance and squat position with open eyes prior to and 2 min after bicycle PWC(170) test. A force platform ("Ritm". Russia) was used to determine static balance control. We found a minimum difference in postural control between wrestlers and controls prior to exercise in bipedal stance. In squat position linear and angular (all p < 0.001) sway velocity of centre of pressure were lower in wrestlers and were negatively correlated to PWC(170) index (r = 0.454 and r = 455, p < 0.001 with linear and angular sway velocities respectively) indicating that 20% dispersion of sway velocities in static strain position may be determined to physical working capacity. After PWC(170) test all parameters of sway were increased in both groups both in bipedal stance (p < 0.01) and squat position (p < 0.001) indicating an important role of muscular fatigue in the decrease of postural stability in both groups. Linear velocity after PWC(170) in bipedal stance increased to an equal extent in both groups but the increases of velocities of sway of centre of pressure in squat position were lower in athletes (ANOVA, p = 0.037 for linear and p = 0.008 for angular sway velocities respectively) and were negatively correlated to an extent of recovery of heart rate after PWC(170) indicating some contribution (6.5-14.2% of dispersion of linear and angular sway velocities) of an recovery rate to maintenance of a high level of postural stability in an static strain position in wrestlers during physical fatigue.  相似文献   

20.
Previous studies on cats walking backward have indicated that they adopt a presumably adaptive posture characterized by extreme dorsiflexion of the lumbar spine. Because humans do not show any marked postural changes during backward walking, we questioned whether the posture exhibited by cats during backward walking was in fact adaptive and whether it was typical of quadrupeds. We therefore compared forward and backward walking in three treadmill-trained dogs and found reduced temporal parameters during backward walking and a marked reduction in wrist palmar-flexion during the swing phase of a backward step, but no change in trunk posture. We suggest that the aberrant posture exhibited by cats during backward walking is more related to ethological factors than to biomechanical ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号