首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplement 700     
《BMJ (Clinical research ed.)》1917,2(2960):S61-S64
  相似文献   

2.
3.
4.
Meconopsis wilsonii subsp. orientalis Grey‐Wilson, Rankin & Wu, a new subspecies from north‐east Yunnan Province of China, is described and illustrated. Its relationships with other members of subsection Eupolychaetia, particularly M. wallichii, M. violacea and the other subspecies of M. wilsonii, are discussed.  相似文献   

5.
6.
Difference spectra and extinction coefficients of P 700   总被引:35,自引:0,他引:35  
  相似文献   

7.
Certain social and industrial activities that were common among Imperial Age Romans have been suggested to have caused lead poisoning whose sociological consequences may have afflicted many members of the aristocratic social stratum. Evaluation of this suggestion has awaited quantitative data. This study reports the skeletal lead content of twenty Italian archaeological populations. Imperial Age populations demonstrated up to ten-fold more bone lead than their predecessors or successors.  相似文献   

8.
依据光合作用反应原理 ,介绍了光诱导的叶片P 70 0氧化还原的测量方法。并分别以烟草和菠菜为例 ,给出了典型的远红光诱导的P 70 0氧化还原曲线和不同波长的作用光诱导下P 70 0的氧化还原动力情况  相似文献   

9.
The characteristics of photooxidation of P700 were investigatedin P700-enriched particles isolated by successive differentialcentrifugations after sonic treatment of chloroplasts. In the presence of ascorbate, the magnitude of photooxidationof P700 was constant at pH values between 5.5 and 9.7. Heat-treatmentat 70°C for 5 min reduced the content of P700 by half; consequently,the magnitude of photooxidation of P700 decreased to half ofthe original value. Intensive sonic treatment for 15 min followedby gel-filtration with Sephadex G-75 did not alter the magnitudeof P700 in the presence of ascorbate. Some reducing agents,i. e. sodium dithionite or sodium borohydride, did not abolishthe photooxidation of P700 under both aerobic and anaerobicconditions. Other treatments such as UV-light irradiation didnot abolish the photooxidation of P700. The nature of the primary electron acceptor of photosystem Iis discussed. (Received July 30, 1971; )  相似文献   

10.
11.
J Breton  E Nabedryk  W Leibl 《Biochemistry》1999,38(36):11585-11592
The effect of global (15)N or (2)H labeling on the light-induced P700(+)/P700 FTIR difference spectra has been investigated in photosystem I samples from Synechocystis at 90 K. The small isotope-induced frequency shifts of the carbonyl modes observed in the P700(+)/P700 spectra are compared to those of isolated chlorophyll a. This comparison shows that bands at 1749 and 1733 cm(-)(1) and at 1697 and 1637 cm(-)(1), which upshift upon formation of P700(+), are candidates for the 10a-ester and 9-keto C=O groups of P700, respectively. A broad and relatively weak band peaking at 3300 cm(-)(1), which does not shift upon global labeling or (1)H-(2)H exchange, is ascribed to an electronic transition of P700(+), indicating that at least two chlorophyll a molecules (denoted P(1) and P(2)) participate in P700(+). Comparisons of the (3)P700/P700 FTIR difference spectrum at 90 K with spectra of triplet formation in isolated chlorophyll a or in RCs from photosystem II or purple bacteria identify the bands at 1733 and 1637 cm(-)(1), which downshift upon formation of (3)P700, as the 10a-ester and 9-keto C=O modes, respectively, of the half of P700 that bears the triplet (P(1)). Thus, while the P(2) carbonyls are free from interaction, both the 10a-ester and the 9-keto C=O of P(1) are hydrogen bonded and the latter group is drastically perturbed compared to chlorophyll a in solution. The Mg atoms of P(1) and P(2) appear to be five-coordinated. No localization of the triplet on the P(2) half of P700 is observed in the temperature range of 90-200 K. Upon P700 photooxidation, the 9-keto C=O bands of P(1) and P(2) upshift by almost the same amount, giving rise to the 1656(+)/1637(-) and 1717(+)/1697(-) cm(-)(1) differential signals, respectively. The relative amplitudes of these differential signals, as well as of those of the 10a-ester C=O modes, appear to be slightly dependent on sample orientation and temperature and on the organism used to generate the P700(+)/P700 spectrum. If it is assumed that the charge density on ring V of chlorophyll a, as measured by the perturbation of the 10a-ester or 9-keto C=O IR vibrations, mainly reflects the spin density on the two halves of the oxidized P700 special pair, a charge distribution ranging from 1:1 to 2:1 (in favor of P(2)) is deduced from the measurements presented here. The extreme downshift of the 9-keto C=O group of P(1), indicative of an unusually strong hydrogen bond, is discussed in relation with the models previously proposed for the PSI special pair.  相似文献   

12.
Photosystem II activity of chloroplast fragments lacking P700   总被引:1,自引:0,他引:1  
  相似文献   

13.
G Hastings  V M Ramesh  R Wang  V Sivakumar  A Webber 《Biochemistry》2001,40(43):12943-12949
Light-induced Fourier transform infrared (FTIR) difference spectroscopy has been used to study the photo-oxidation of the primary electron donor (P700) in PS I particles from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. To aid in the interpretation of the spectra, PS I particles from a site-directed mutant of C. reinhardtii, in which the axial histidine ligand (HisA676) was changed to serine, were also studied. A high-frequency (3300-2600 cm(-1)) electronic transition is observed for all PS I particles, demonstrating that P700 is dimeric. The electronic band is, however, species-dependent, indicating some differences in the electronic structure of P700 and/or P700(+) in C. reinhardtii and Synechocystis sp. 6803. For PS I particles from C. reinhardtii, substitution of HisA676 with serine has little effect on the ester carbonyl modes of the chlorophylls of P700. However, the keto carbonyl modes are considerably altered. Comparison of (P700(+) - P700) FTIR difference spectra obtained using PS I particles from the wild type (WT) and the HS(A676) mutant of C. reinhardtii indicates that the mutation primarily exerts its influence on the P700 ground state. The 13(1) keto carbonyls of the chlorophylls of P700 of the wild type absorb at similar frequencies, which has previously made these transitions difficult to resolve. However, for the HS(A676) mutant, the 13(1) keto carbonyl of chlorophyll a or chlorophyll a' of P700 on PsaB or PsaA absorbs at 1703.4 or 1694.2 cm(-1), respectively, allowing their unambiguous resolution. Upon P700(+) formation, in both PS I particles from C. reinhardtii, the higher-frequency carbonyl band upshifts by approximately 14 cm(-1) while the lower frequency carbonyl downshifts by approximately 10 cm(-1). The similarity in the spectra for WT PS I particles from C. reinhardtii and Synechocystis sp. 6803 indicates that a similar interpretation is probably valid for PS I particles from both species. The mutant results allow for an interpretation of the behavior of the 13(1) keto carbonyls of P700 that is different from previous work [Breton, J., Nabedryk, E., and Leibl, W. (1999) Biochemistry 38, 11585-11592], in which it was suggested that 13(1) keto carbonyls of P700 absorb at 1697 and 1639 cm(-1), and upshift by 21 cm(-1) upon cation formation. The interpretation of the spectra reported here is more in line with recent results from ENDOR spectroscopy and high-resolution crystallography.  相似文献   

14.
15.
Fluorescence yield dependence on external magnetic field (0–600 G) was measured for chlorophyll-protein complexes enriched with Photosystem I. Maximal relative changes of fluorescence yield at room temperature (1.0–2.5%) were dependent on the chlorphyll a:P-700 ratio. Magnetic field-induced changes were observed only in the presence of dithionite. At low temperatures (down to ?160°C) the magnetic field-induced effect decreased. The effect is obviously connected with the functions of reaction centers in Photosystem I. An explanation of the effect is proposed based on the hypothesis of radical pairs recombination within the reaction center. For the radical pair (P-700 A), an intermediate acceptor, A, with a g-value approximately equal to that of P-700 is proposed.  相似文献   

16.
17.
Room temperature, light induced (P700(+)-P700) Fourier transform infrared (FTIR) difference spectra have been obtained using photosystem I (PS I) particles from Synechocystis sp. PCC 6803 that are unlabeled, uniformly (2)H labeled, and uniformly (15)N labeled. Spectra were also obtained for PS I particles that had been extensively washed and incubated in D(2)O. Previously, we have found that extensive washing and incubation of PS I samples in D(2)O does not alter the (P700(+)-P700) FTIR difference spectrum, even with approximately 50% proton exchange. This indicates that the P700 binding site is inaccessible to solvent water. Upon uniform (2)H labeling of PS I, however, the (P700(+)-P700) FTIR difference spectra are considerably altered. From spectra obtained using PS I particles grown in D(2)O and H(2)O, a ((1)H-(2)H) isotope edited double difference spectrum was constructed, and it is shown that all difference bands associated with ester/keto carbonyl modes of the chlorophylls of P700 and P700(+) downshift 4-5/1-3 cm(-1) upon (2)H labeling, respectively. It is also shown that the ester and keto carbonyl modes of the chlorophylls of P700 need not be heterogeneously distributed in frequency. Finally, we find no evidence for the presence of a cysteine mode in our difference spectra. The spectrum obtained using (2)H labeled PS I particles indicates that a negative difference band at 1698 cm(-1) is associated with at least two species. The observed (15)N and (2)H induced band shifts strongly support the idea that the two species are the 13(1) keto carbonyl modes of both chlorophylls of P700. We also show that a negative difference band at approximately 1639 cm(-1) is somewhat modified in intensity, but unaltered in frequency, upon (2)H labeling. This indicates that this band is not associated with a strongly hydrogen bonded keto carbonyl mode of one of the chlorophylls of P700.  相似文献   

18.
19.
20.
Photoinhibition and P700 in the Marine Diatom Amphora sp   总被引:3,自引:1,他引:2       下载免费PDF全文
The marine diatom Amphora sp. was grown at a light intensity of 7.0 × 1015 quanta centimeter−2 second−1. Light saturation of photosynthesis for these cells was between 6.0 and 7.0 × 1016 quanta centimeter−2 second−1. At light intensities greater than saturation, photosynthetic 14CO2 fixation was depressed, while P700 unit size (chlorophyll a concentration/P700 activity) increased and number of P700 units per cell decreased. After a 1-hour exposure of Amphora sp. to a photoinhibitory light intensity of 2.45 × 1017 quanta centimeter−2 second−1, there was a 45 to 50% decrease in the rate of 14CO2 fixation relative to the rate at the culture light intensity. There also was a 25% increase in P700 unit size and a 30% reduction in the number of P700 units per cell but no change in total chlorophyll a concentration. Following this period of photoinhibition, the cells were returned to a light regime similar to that in the original culture conditions. Within 1 hour, both number of P700 units per cell and P700 unit size returned to levels similar to those of cells which were kept at the culture light intensity. The rates of photosynthesis did not recover as rapidly, requiring 2 to 3 hours to return to the rate for the nonphotoinhibited cells. Our results indicate that a decrease in P700 activity (with a resultant increase in P700 unit size) may be partially responsible for the photoinhibition of algal photosynthetic carbon dioxide fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号