首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study employed confocal laser scanning microscopy to monitor the effect of H2O2 on cytosolic as well as mitochondrial calcium (Ca2+) concentrations, mitochondrial inner membrane potential (psi m) and flavine adenine dinucleotide (FAD) oxidation state in isolated mouse pancreatic acinar cells. The results show that incubation of pancreatic acinar cells with H2O2, in the absence of extracellular Ca2+ ([Ca2+],) led to an increase either in cytosolic and in mitochondrial Ca2+ concentration. Additionally, H2O2 induced a depolarization of mitochondria and increased oxidized FAD level. Pretreatment of cells with the mitochondrial inhibitors rotenone or cyanide inhibited the response induced by H2O2 on mitochondrial inner membrane potential but failed to block oxidation of FAD in the presence of H2O2. However, the H2O2-evoked effect on FAD state was blocked by pretreatment of cells with the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP). On the other hand, perfusion of cells with thapsigargin (Tps), an inhibitor of the SERCA pump, led to an increase in mitochondrial Ca2+ concentration and in oxidized FAD level, and depolarized mitochondria. Pretreatment of cells with thapsigargin inhibited H2O2-evoked changes in mitochondrial Ca2+ concentration but not those in membrane potential and FAD state. The present results have indicated that H2O2 can evoke marked changes in mitochondrial activity that might be due to the oxidant nature of H2O2. This in turn could represent the mechanism of action of ROS to induce cellular damage leading to cell dysfunction and generation of pathologies in the pancreas.  相似文献   

2.
Role of mitochondria in Ca(2+) homeostasis of mouse pancreatic acinar cells   总被引:1,自引:0,他引:1  
The effects of mitochondrial Ca(2+) uptake on cytosolic Ca(2+) concentration ([Ca(2+)](c)) were investigated in mouse pancreatic acinar cells using cytosolic and/or mitochondrial Ca(2+) indicators. When calcium stores of the endoplasmic reticulum (ER) were emptied by prolonged incubation with thapsigargin (Tg) and acetylcholine (ACh), small amounts of calcium could be released into the cytosol (Delta[Ca(2+)](c)=46 +/- 6 nM, n=13) by applying mitochondrial inhibitors (combination of rotenone (R) and oligomycin (O)). However, applications of R/O, soon after the peak of Tg/Ach-induced Ca(2+) transient, produced a larger cytosolic calcium elevation (Delta[Ca(2+)](c)=84 +/- 6 nM, n=9), this corresponds to an increase in the total mitochondrial calcium concentration ([Ca(2+)](m)) by approximately 0.4 mM. In cells pre-treated with R/O or Ru360 (a specific blocker of mitochondrial Ca(2+) uniporter), the decay time-constant of the Tg/ACh-induced Ca(2+) response was prolonged by approximately 40 and 80%, respectively. Tests with the mitochondrial Ca(2+) indicator rhod-2 revealed large increases in [Ca(2+)](m) in response to Tg/ACh applications; this mitochondrial uptake was blocked by Ru360. In cells pre-treated with Ru360, 10nM ACh elicited large global increases in [Ca(2+)](c), compared to control cells in which ACh-induced Ca(2+) signals were localised in the apical region. We conclude that mitochondria are active elements of cellular Ca(2+) homeostasis in pancreatic acinar cells and directly modulate both local and global calcium signals induced by agonists.  相似文献   

3.
In the present study we have employed single cell imaging analysis to monitor the propagation of cholecystokinin-evoked Ca(2+) waves in mouse pancreatic acinar cells. Stimulation of cells with 1 nM CCK-8 led to an initial Ca(2+) release at the luminal cell pole and subsequent spreading of the Ca(2+) signal towards the basolateral membrane in the form of a Ca(2+) wave. Inhibition of sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA) activity by 1 microM thapsigargin, preincubation in the presence of 100 microM H(2)O(2) or inhibition of PKC with either 5 microM Ro31-8220 or 3 microM GF-109203-X all led to a faster propagation of CCK-8-induced Ca(2+) signals. The propagation of CCK-8-evoked Ca(2+) signals was slowed down by activation of PKC with 1 microM PMA, and preincubation of cells in the presence of H(2)O(2) counteracted the effect of PKC inhibition. The protonophore FCCP (100 nM) and the inhibitor of the mitochondrial Ca(2+)-uniporter Ru360 (10 microM) led to an increase in the propagation rate of CCK-8-evoked Ca(2+) waves. Finally, depolymerisation of actin cytoskeleton with cytochalasin D (10 microM) led to a faster propagation of CCK-8-evoked Ca(2+) signals. Stabilization of actin cytoskeleton with jasplakinolide (10 microM) did not induce significant changes on CCK-8-evoked Ca(2+) waves. Preincubation of cells in the presence of H(2)O(2) counteracted the effect of cytochalasin D on CCK-8-evoked Ca(2+) wave propagation. Our results suggest that spreading of cytosolic Ca(2+) waves evoked by CCK-8 can be modulated by low levels of oxidants acting on multiple Ca(2+)-handling mechanisms.  相似文献   

4.
Altered calcium homeostasis and increased cytosolic calcium concentrations ([Ca(2+)](c)) are linked to neuronal apoptosis in epilepsy and in cerebral ischemia, respectively. Apoptotic programmed cell death is regulated by the antiapoptotic Bcl2 family of proteins. Here, we investigated the role of Bcl2 on calcium (Ca(2+)) homeostasis in PC12 cells, focusing on L-type voltage-dependent calcium channels (VDCC). Cytosolic Ca(2+) transients ([Ca(2+)](c)) and changes of mitochondrial Ca(2+) concentrations ([Ca(2+)](m)) were monitored using cytosolic and mitochondrially targeted aequorins of control PC12 cells and PC12 cells stably overexpressing Bcl2. We found that: (i) the [Ca(2+)](c) and [Ca(2+)](m) elevations elicited by K(+) pulses were markedly depressed in Bcl2 cells, with respect to control cells; (ii) such depression of [Ca(2+)](m) was not seen either in digitonin-permeabilized cells or in intact cells treated with ionomycin; (iii) the [Ca(2+)](c) transient depression seen in Bcl2 cells was reversed by shRNA transfection, as well as by the Bcl2 inhibitor HA14-1; (iv) the L-type Ca(2+) channel agonist Bay K 8644 enhanced K(+)-evoked [Ca(2+)](m) peak fourfold in Bcl2, and twofold in control cells; (v) in current-clamped cells the depolarization evoked by K(+) generated a more hyperpolarized voltage step in Bcl2, as compared to control cells. Taken together, our experiments suggest that the reduction of the [Ca(2+)](c) and [Ca(2+)](m) transients elicited by K(+), in PC12 cells overexpressing Bcl2, is related to the reduction of Ca(2+) entry through L-type Ca(2+) channels. This may be due to the fact that Bcl2 mitigates cell depolarization, thus diminishing the recruitment of L-type Ca(2+) channels, the subsequent Ca(2+) entry, and mitochondrial Ca(2+) overload.  相似文献   

5.
This study investigates the effects of the islet hormones insulin (Ins), glucagon (Glu), and somatostatin (Som) with nerve stimulation (EFS) acetylcholine (ACh) and cholecytokinin-octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca(2+)](i) in the pancreas of age-matched control and diabetic rats. Either Ins, Glu or Som elicited small increases in amylase secretion from the pancreas of age-matched control animals compared to a much larger increase in amylase secretion with either EFS, ACh or CCK-8. Combining the islet hormones with either EFS, ACh or CCK-8 resulted in marked potentiation of amylase output. In the diabetic pancreas, the islet hormones had no effect on amylase secretion compared to diabetic control. Moreover, either EFS, ACh or CCK-8 evoked a much smaller increase in amylase output compared to age-matched control. In addition, the islet hormones failed to potentiate the secretory effects of either EFS, ACh or CCK-8. In fura-2 loaded acinar cells from age-matched control pancreas either Ins or Glu elicited a small increase in [Ca(2+)](i) whereas Som had no effect. Both ACh and CCK-8 evoked large increases in [Ca(2+)](i) compared to control. Combining either Ins, Glu or Som with either ACh or CCK-8 resulted in a marked elevation in [Ca(2+)](i) compared to the responses obtained with either the islet hormones, ACh or CCK-8 alone. In diabetic fura-2 loaded pancreatic acinar cells, the islet hormones had no effect on [Ca(2+)](i) compared to control and moreover, the responses were much smaller than those obtained in acinar cells from age-matched control. Both ACh and CCK-8 induced large increases in [Ca(2+)]( i) in diabetic acinar cells. However, combining the islet hormones with either ACh or CCK-8 failed to enhance [Ca(2+)](i) compared to the reponses obtained in acinar cells from age-matched control. The results suggests that [Ca(2+)](i) homeostasis is deranged during diabetes mellitus and this in turn is probably associated with reduced pancreatic amylase secretion.  相似文献   

6.
In the present study, we have employed confocal laser scanning microscopy to investigate the effect that stimulation of mouse pancreatic acinar cells with the secretagogue cholecystokinin (CCK) has on mitochondrial activity. We have monitored changes in cytosolic as well as mitochondrial Ca2+ concentrations, mitochondrial membrane potential and FAD autofluorescence by loading the cells with fluo-3, rhod-2 or JC-1, respectively. Our results show that stimulation of cells with cholecystokinin led to release of Ca2+ from intracellular stores that then accumulated into mitochondria. In the presence of the hormone a depolarization of mitochondrial membrane potential was observed, which partially recovered; in addition a transient increase in FAD autofluorescence could be observed. Similarly, treatment of cells with thapsigargin induced increases in mitochondrial Ca2+ and FAD autofluorescence, and depolarized mitochondria. Pretreament of cells with thapsigargin blocked cholecystokinin-evoked changes. Similar results were obtained when the cells were incubated in the presence of rotenone, which blocks the mitochondrial electron transport chain. Our findings are consistent with changes in mitochondrial activity in response to stimulation of pancreatic acinar cells with cholecystokinin. Following stimulation, mitochondria take up Ca2+ that could in turn activate the mitochondrial machinery that may match the energy supply necessary for the cell function during secretion, suggesting that Ca2+ can act as a regulator of mitochondrial activity.  相似文献   

7.
Impairment of the normal spatiotemporal pattern of intracellular Ca(2+) ([Ca(2+)](i)) signaling, and in particular, the transition to an irreversible "Ca(2+) overload" response, has been implicated in various pathophysiological states. In some diseases, including pancreatitis, oxidative stress has been suggested to mediate this Ca(2+) overload and the associated cell injury. We have previously demonstrated that oxidative stress with hydrogen peroxide (H(2)O(2)) evokes a Ca(2+) overload response and inhibition of plasma membrane Ca(2+)-ATPase (PMCA) in rat pancreatic acinar cells (Bruce JI and Elliott AC. Am J Physiol Cell Physiol 293: C938-C950, 2007). The aim of the present study was to further examine this oxidant-impaired inhibition of the PMCA, focusing on the role of the mitochondria. Using a [Ca(2+)](i) clearance assay in which mitochondrial Ca(2+) uptake was blocked with Ru-360, H(2)O(2) (50 microM-1 mM) markedly inhibited the PMCA activity. This H(2)O(2)-induced inhibition of the PMCA correlated with mitochondrial depolarization (assessed using tetramethylrhodamine methylester fluorescence) but could occur without significant ATP depletion (assessed using Magnesium Green fluorescence). The H(2)O(2)-induced PMCA inhibition was sensitive to the mitochondrial permeability transition pore (mPTP) inhibitors, cyclosporin-A and bongkrekic acid. These data suggest that oxidant-induced opening of the mPTP and mitochondrial depolarization may lead to an inhibition of the PMCA that is independent of mitochondrial Ca(2+) handling and ATP depletion, and we speculate that this may involve the release of a mitochondrial factor. Such a phenomenon may be responsible for the Ca(2+) overload response, and for the transition between apoptotic and necrotic cell death thought to be important in many disease states.  相似文献   

8.
Bile acids are known to induce Ca(2+) signals in pancreatic acinar cells. We have recently shown that phosphatidylinositol 3-kinase (PI3K) regulates changes in free cytosolic Ca(2+) concentration ([Ca(2+)](i)) elicited by CCK by inhibiting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA). The present study sought to determine whether PI3K regulates bile acid-induced [Ca(2+)](i) responses. In pancreatic acinar cells, pharmacological inhibition of PI3K with LY-294002 or wortmannin inhibited [Ca(2+)](i) responses to taurolithocholic acid 3-sulfate (TLC-S) and taurochenodeoxycholate (TCDC). Furthermore, genetic deletion of the PI3K gamma-isoform also decreased [Ca(2+)](i) responses to bile acids. Depletion of CCK-sensitive intracellular Ca(2+) pools or application of caffeine inhibited bile acid-induced [Ca(2+)](i) signals, indicating that bile acids release Ca(2+) from agonist-sensitive endoplasmic reticulum (ER) stores via an inositol (1,4,5)-trisphosphate-dependent mechanism. PI3K inhibitors increased the amount of Ca(2+) in intracellular stores during the exposure of acinar cells to bile acids, suggesting that PI3K negatively regulates SERCA-dependent Ca(2+) reloading into the ER. Bile acids inhibited Ca(2+) reloading into ER in permeabilized acinar cells. This effect was augmented by phosphatidylinositol (3,4,5)-trisphosphate (PIP(3)), suggesting that both bile acids and PI3K act synergistically to inhibit SERCA. Furthermore, inhibition of PI3K by LY-294002 completely inhibited trypsinogen activation caused by the bile acid TLC-S. Our results indicate that PI3K and its product, PIP(3), facilitate bile acid-induced [Ca(2+)](i) responses in pancreatic acinar cells through inhibition of SERCA-dependent Ca(2+) reloading into the ER and that bile acid-induced trypsinogen activation is mediated by PI3K. The findings have important implications for the mechanism of acute pancreatitis since [Ca(2+)](i) increases and trypsinogen activation mediate key pathological processes in this disorder.  相似文献   

9.
Mitochondrial Ca2+ and the heart   总被引:2,自引:0,他引:2  
It is now well established that mitochondria accumulate Ca(2+) ions during cytosolic Ca(2+) ([Ca(2+)](i)) elevations in a variety of cell types including cardiomyocytes. Elevations in intramitochondrial Ca(2+) ([Ca(2+)](m)) activate several key enzymes in the mitochondrial matrix to enhance ATP production, alter the spatial and temporal profile of intracellular Ca(2+) signaling, and play an important role in the initiation of cell death pathways. Moreover, mitochondrial Ca(2+) uptake stimulates nitric oxide (NO) production by mitochondria, which modulates oxygen consumption, ATP production, reactive oxygen species (ROS) generation, and in turn provides negative feedback for the regulation of mitochondrial Ca(2+) accumulation. Controversy remains, however, whether in cardiac myocytes mitochondrial Ca(2+) transport mechanisms allow beat-to-beat transmission of fast cytosolic [Ca(2+)](i) oscillations into oscillatory changes in mitochondrial matrix [Ca(2+)](m). This review critically summarizes the recent experimental work in this field.  相似文献   

10.
Reactive oxygen species (ROS) contribute to cell damage during reperfusion of the heart. ROS may exert their effects partly by interfering with Ca(2+) homeostasis of the myocardium. The purpose of this study was to investigate the effects of hydrogen peroxide (H(2)O(2)) on Ca(2+) accumulation during reoxygenation of isolated adult rat cardiomyocytes exposed to 1 h of hypoxia and to relate the effects to possible changes in release of lactate dehydrogenase (LDH), free intracellular Ca(2+) ([Ca(2+)](i)) and Mg(2+)([Mg(2+)](i)), and mitochondrial membrane potential (Deltapsim). Cell Ca(2+) was determined by (45)Ca(2+) uptake. Free [Mg(2+)](i) and [Ca(2+)](i) and Deltapsim were measured by flow cytometry. Reoxygenation-induced Ca(2+) accumulation was attenuated by 23 and 34% by 10 and 25 microM H(2)O(2), respectively, added at reoxygenation. H(2)O(2) at 100 and 250 microM increased cell Ca(2+) by 50 and 83%, respectively, whereas 500 microM H(2)O(2) decreased cell Ca(2+) by 20%. H(2)O(2) at (25 microM) reduced LDH release and [Mg(2+)](i) and increased Deltapsim, indicating cell protection, whereas 250 microM H(2)O(2) increased LDH release and [Mg(2+)](i) and decreased Deltapsim, indicating cell damage. Clonazepam (100 microM) attenuated the increase in Ca(2+) accumulation, the elevation of [Ca(2+)](i), and the decrease in Deltapsim induced by 100 and 250 microM H(2)O(2) during reoxygenation. We report for the first time that 25 microM H(2)O(2) attenuates Ca(2+) accumulation, LDH release, and dissipation of Deltapsim during reoxygenation of hypoxic cardiomyocytes, indicating cell protection.  相似文献   

11.
We have measured Ca(2+)concentration changes in intracellular Ca(2+)stores ([Ca(2+)](store)) of rat pancreatic acinar cells in primary culture in response to the Ca(2+)mobilizing substances inositol-1,4,5-trisphosphate (IP(3)) and cyclic ADP-ribose (cADPr) using the Ca(2+)-sensitive dye mag Fura-2. We found that in this cell model IP(3)releases Ca(2+)in a quantal manner. Higher Ca(2+)concentration in the stores allowed a response to lower IP(3)concentrations ([IP(3)]) indicating that the sensitivity of IP(3)receptors to IP(3)is regulated by the Ca(2+)concentration in the stores. Cyclic ADPr, that modifies 'Ca(2+)-induced-Ca(2+)-release' (CICR), was also able to release Ca(2+)from intracellular stores of pancreatic acinar cells in primary culture. In comparison to the Ca(2+)ionophore ionomycin, which induced a maximal decrease (100%) in [Ca(2+)](store), a hypermaximal [IP(3)] (10 microM) dropped [Ca(2+)](store)by 87% and cADPr had no further effect. Cyclic ADPr reduced [Ca(2+)](store)by only 56% and subsequent IP(3)addition caused further maximal decrease in [Ca(2+)](store). Furthermore, a maximal [IP(3)] caused the same decrease in [Ca(2+)](store)in all regions of the cell, whereas cADPr dropped the [Ca(2+)](store)between 20 and 80% in different cell regions. From these data we conclude that in primary cultured rat pancreatic acinar cells at least three types of Ca(2+)stores exist. One type possessing both cADPr receptors and IP(3)receptors, a second type possessing only IP(3)receptors, and a third type whose Ca(2+)can be released by ionomycin but neither by IP(3)nor by cADPr.  相似文献   

12.
In the present study we have studied the changes in the intracellular reduction-oxidation state in mouse pancreatic acinar cells following stimulation with cholecystokinin octapeptide (CCK-8) and its dependence on Ca2+ mobilization. In our investigations cytosolic Ca2+ concentration and reactive oxygen species (ROS) production were determined by loading of cells with fura-2 and CM-H2DCF-DA, respectively. Changes in these parameters were determined by following changes in fluorescence in the cuvette of a spectrofluorimeter. The results show that stimulation of cells with CCK-8 and/or the sarco-endoplasmic reticulum Ca2+ pump inhibitor, thapsigargin (Tps), both induced changes in cytosolic free Ca2+ concentration and led to an increase in fluorescence of CM-H2DCF-DA, reflecting an increase in oxidation. In the presence of Tps, addition of CCK-8 did not significantly increase fluorescence compared to that evoked by the SERCA inhibitor. Similar results were obtained in the absence of extracellular Ca2+ and in the presence of EGTA. When the cells were challenged in the presence of the intracellular Ca2+ chelator BAPTA and in the absence of extracellular Ca2+ the responses to both CCK-8 and Tps were reduced although not completely inhibited. The mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone and the inhibitor of the electron transport chain, antimycin, evoked a marked increase in CM-H2DCF-DA fluorescence and completely inhibited CCK-8 and Tps-evoked responses, indicating that ROS are generated in the mitochondria. In summary, stimulation of mouse pancreatic acinar cells with CCK-8 leads to generation of ROS, and this effect may be derived from Ca2+ mobilization from intracellular stores and involves mitochondrial metabolism.  相似文献   

13.
Using dual excitation and fixed emission fluorescence microscopy, we were able to measure changes in cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) and mitochondrial membrane potential simultaneously in the pancreatic beta-cell. The beta-cells were exposed to a combination of the Ca(2+) indicator fura-2/AM and the indicator of mitochondrial membrane potential, rhodamine 123 (Rh123). Using simultaneous measurements of mitochondrial membrane potential and [Ca(2+)](i) during glucose stimulation, it was possible to measure the time lag between the onset of mitochondrial hyperpolarization and changes in [Ca(2+)](i). Glucose-induced oscillations in [Ca(2+)](i) were followed by transient depolarizations of mitochondrial membrane potential. These results are compatible with a model in which nadirs in [Ca(2+)](i) oscillations are generated by a transient, Ca(2+)-induced inhibition of mitochondrial metabolism resulting in a temporary fall in the cytoplasmic ATP/ADP ratio, opening of plasma membrane K(ATP) channels, repolarization of the plasma membrane, and thus transient closure of voltage-gated L-type Ca(2+) channels.  相似文献   

14.
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin naturally found in grapes and red wine, is a redox-active compound endowed with significant positive activities. In this study, the effects of resveratrol on intracellular free Ca(2+) concentration ([Ca(2+)](c)) and on cell viability in tumoral AR42J pancreatic cells are examined. The results show that resveratrol (100 μM and 1 mM) induced changes in [Ca(2+)](c), that consisted of single or short lasting spikes followed by a slow reduction toward a value close to the resting level. Lower concentrations of resveratrol (1 and 10 μM) did not show detectable effects on [Ca(2+)](c). Depletion of intracellular Ca(2+) stores by stimulation of cells with 1 nM CCK-8, 20 pM CCK-8 or 1 μM thapsigargin, blocked Ca(2+) responses evoked by resveratrol. Conversely, prior stimulation of cells with resveratrol inhibited Ca(2+) mobilization in response to a secondary application of CCK-8 or thapsigargin. In addition, resveratrol inhibited oscillations in [Ca(2+)](c) evoked by a physiological concentration of CCK-8 (20 pM). On the other hand, incubation of cells in the presence of resveratrol induced a reduction of cell viability. Finally, incubation of AR42J cells in the presence of resveratrol led to activation of c-Jun N-terminal kinase (JNK), a mitogen-activated protein kinase responsive to stress stimuli. Activation of JNK was reduced in the absence of extracellular Ca(2+). In summary, the results show that resveratrol releases Ca(2+) from intracellular stores, most probably from the endoplasmic reticulum, and reduces AR42J cells viability. Reorganization of cell's survival/death processes in the presence of resveratrol may involve Ca(2+)-mediated JNK activation.  相似文献   

15.
In pancreatic acinar cells, inositol 1,4,5-trisphosphate (InsP(3))-dependent cytosolic calcium ([Ca(2+)](i)) increases resulting from agonist stimulation are initiated in an apical "trigger zone," where the vast majority of InsP(3) receptors (InsP(3)R) are localized. At threshold stimulation, [Ca(2+)](i) signals are confined to this region, whereas at concentrations of agonists that optimally evoke secretion, a global Ca(2+) wave results. Simple diffusion of Ca(2+) from the trigger zone is unlikely to account for a global [Ca(2+)](i) elevation. Furthermore, mitochondrial import has been reported to limit Ca(2+) diffusion from the trigger zone. As such, there is no consensus as to how local [Ca(2+)](i) signals become global responses. This study therefore investigated the mechanism responsible for these events. Agonist-evoked [Ca(2+)](i) oscillations were converted to sustained [Ca(2+)](i) increases after inhibition of mitochondrial Ca(2+) import. These [Ca(2+)](i) increases were dependent on Ca(2+) release from the endoplasmic reticulum and were blocked by 100 microM ryanodine. Similarly, "uncaging" of physiological [Ca(2+)](i) levels in whole-cell patch-clamped cells resulted in rapid activation of a Ca(2+)-activated current, the recovery of which was prolonged by inhibition of mitochondrial import. This effect was also abolished by ryanodine receptor (RyR) blockade. Photolysis of d-myo InsP(3) P(4(5))-1-(2-nitrophenyl)-ethyl ester (caged InsP(3)) produced either apically localized or global [Ca(2+)](i) increases in a dose-dependent manner, as visualized by digital imaging. Mitochondrial inhibition permitted apically localized increases to propagate throughout the cell as a wave, but this propagation was inhibited by ryanodine and was not seen for minimal control responses resembling [Ca(2+)](i) puffs. Global [Ca(2+)](i) rises initiated by InsP(3) were also reduced by ryanodine, limiting the increase to a region slightly larger than the trigger zone. These data suggest that, while Ca(2+) release is initially triggered through InsP(3)R, release by RyRs is the dominant mechanism for propagating global waves. In addition, mitochondrial Ca(2+) import controls the spread of Ca(2+) throughout acinar cells by modulating RyR activation.  相似文献   

16.
To study the role of mitochondrial Ca(2+) clearance in stimulated cells, changes in free Ca(2+) concentration in the cytosol, [Ca(2+)](c) and that in mitochondria, [Ca(2+)](m) along with secretory responses were observed using chromaffin cells co-loaded with Fura-2 and Rhod-2 in the perfused rat adrenal medulla. When the cells were stimulated with 40 mM K(+) in the perfusate, the duration of [Ca(2+)](m) response markedly increased with prolongation of the stimulation period, exhibiting a mean half-decay time of 21 min with 30s stimulation, whereas its amplitude was not altered with stimulations of 10-30s. A computer simulation analysis showed that such a mode of [Ca(2+)](m) response can be produced if excess Ca(2+) taken up by mitochondria precipitates as calcium phosphate (Pi) salt. In the presence of 5 microM rotenone plus 10 microM oligomycin, a decrease in the duration of [Ca(2+)](m) response and a slight but significant increase (24%) in the secretory response to 30s stimulation with 40 mM K(+) were observed. Simulation analyses suggested that this effect of rotenone may be due to reduction in mitochondrial Ca(2+) uptake induced by rotenone-elicited partial depolarization of the mitochondrial membrane potential. In chromaffin cells transsynaptically stimulated through the splanchnic nerve, the intensity of NAD(P)H autofluorescence changed with time courses similar to those of [Ca(2+)](m) responses. The temporal profiles of those two responses were prolonged in a similar manner by application of an inhibitor of mitochondrial Na(+)/Ca(2+) exchanger, CGP37157. Thus, due to the unique Ca(2+) buffering mechanism, [Ca(2+)](m) responses associated with massive mitochondrial Ca(2+) uptake may occur within a limited concentration range in which Ca(2+)-sensitive dehydrogenases are activated to control the mitochondrial redox state in stimulated chromaffin cells.  相似文献   

17.
Dahlem YA  Wolf G  Siemen D  Horn TF 《Cell calcium》2006,39(5):387-400
The permeability transition pore (PTP) and the ATP-dependent potassium (mtK-ATP) channel of mitochondria are known to play key roles in mitochondrially mediated apoptosis. We investigated how modulation of the permeability transition pore (PTP) and the ATP-dependent potassium (mtK-ATP) channel, either as single elements or in combination, affects the proapoptotic intracellular calcium ([Ca(2+)](i)) transients and the mitochondrial membrane potential (psi(m)). For this purpose a model was established exploring the [Ca(2+)](i) transients in N2A cells using continuous application of ATP that causes a biphasic [Ca(2+)](i) response. This response was sensitive to endoplasmatic reticulum (ER) Ca(2+) depletion and a smooth ER Ca(2+)-ATPase (SERCA) antagonist. PTP inhibition by cyclosporine A (CsA) or its non-immunosuppressive derivative NIM811 caused an amplification of the secondary [Ca(2+)](i) peak and induced a hyperpolarization of psi(m). Both the putative mtK-ATP channel inhibitor 5-hydroxydecanoate (5-HD) and the opener diazoxide ameliorated the ATP-induced secondary [Ca(2+)](i) peak. The effect of diazoxide was accompanied by a depolarization of psi(m) whereas 5-HD had no effect on psi(m). When diazoxide and CsA or NIM811 were applied together the secondary [Ca(2+)](i) rise did not return to baseline and a not significant hyperpolarization of psi(m) was observed. So, simultaneous inhibition of PTP and activation of the mtK-ATP channel prevents the increased slope of the secondary [Ca(2+)](i) peak induced by CsA (or NIM811) and also the depolarization after diazoxide application. Hence, we propose that modulation of one of these channels leads to functional changes of the other channel by means of Delta[Ca(2+)](i) and Deltapsi(m).  相似文献   

18.
Oscillations in plasma membrane potential play a central role in glucose-induced insulin secretion from pancreatic β-cells and related insulinoma cell lines. We have employed a novel fluorescent plasma membrane potential (Δψ(p)) indicator in combination with indicators of cytoplasmic free Ca(2+) ([Ca(2+)](c)), mitochondrial membrane potential (Δψ(m)), matrix ATP concentration, and NAD(P)H fluorescence to investigate the role of mitochondria in the generation of plasma membrane potential oscillations in clonal INS-1 832/13 β-cells. Elevated glucose caused oscillations in plasma membrane potential and cytoplasmic free Ca(2+) concentration over the same concentration range required for insulin release, although considerable cell-to-cell heterogeneity was observed. Exogenous pyruvate was as effective as glucose in inducing oscillations, both in the presence and absence of 2.8 mM glucose. Increased glucose and pyruvate each produced a concentration-dependent mitochondrial hyperpolarization. The causal relationships between pairs of parameters (Δψ(p) and [Ca(2+)](c), Δψ(p) and NAD(P)H, matrix ATP and [Ca(2+)](c), and Δψ(m) and [Ca(2+)](c)) were investigated at single cell level. It is concluded that, in these β-cells, depolarizing oscillations in Δψ(p) are not initiated by mitochondrial bioenergetic changes. Instead, regardless of substrate, it appears that the mitochondria may simply be required to exceed a critical bioenergetic threshold to allow release of insulin. Once this threshold is exceeded, an autonomous Δψ(p) oscillatory mechanism is initiated.  相似文献   

19.
Sun L  Yau HY  Lau OC  Huang Y  Yao X 《PloS one》2011,6(9):e25432
We compared the Ca(2+) responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H(2)O(2)) caused an increase in cytosolic Ca(2+) levels ([Ca(2+)](i)) in both cell types. The [Ca(2+)](i) rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP(3)) receptors. Removal of Ca(2+) from the bath also decreased the [Ca(2+)](i) rises in response to H(2)O(2). In addition, treatment of endothelial cells with H(2)O(2) reduced the [Ca(2+)](i) responses to subsequent challenge of ATP. The decreased [Ca(2+)](i) responses to ATP were resulted from a pre-depletion of intracellular Ca(2+) stores by H(2)O(2). Interestingly, we also found that Ca(2+) store depletion was more sensitive to H(2)O(2) treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca(2+)](i) rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H(2)O(2) but not by hydroxyl radical. H(2)O(2) contribution in HX-XO-induced [Ca(2+)](i) rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H(2)O(2) could induce store Ca(2+) release via phospholipase C-IP(3) pathway in endothelial cells. Resultant emptying of intracellular Ca(2+) stores contributed to the reduced [Ca(2+)](i) responses to subsequent ATP challenge. The [Ca(2+)](i) responses were more sensitive to H(2)O(2) in endothelial cells of small-sized arteries than those of large-sized arteries.  相似文献   

20.
Whether mitochondrial Ca(2+) transport is rapid enough to respond to changes in cytosolic [Ca(2+)] ([Ca(2+)](c)) which occur during excitation-contraction coupling in the heart is controversial; different results wereobtained with different techniques and different species. In this study mitochondrial [Ca(2+)] ([Ca(2+)](m)) was measured in indo-1/AM-loaded myocytes from rat and guinea-pig hearts where the cytosolic indo-1 had been removed by extended incubation of cells at 37 degrees C ("heat treatment"). The mitochondrial origin of the remaining fluorescence was confirmed by sensitivity of the indo-1 signal to ruthenium red. In resting rat myocytes, [Ca(2+)](m) was lower than [Ca(2+)](c), whereas in guinea-pig cells [Ca(2+)](m) was higher than [Ca(2+)](c). Upon electrical stimulation of cells, no change occurred in [Ca(2+)](m) in rat myocytes. However, in guinea-pig cells mitochondrial Ca(2+) transients were clearly visible with a mean indo-1 ratio amplitude of 0.153 +/- 0.2 (n = 20), compared with 0.306 +/- 0.02 (n = 25), p < 0.001, prior to heat treatment. These observations suggest significant differences in mitochondrial Ca(2+) transport in cardiomyocytes from different species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号