首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurogenesis proceeds throughout life in the higher vocal center (HVC) of the adult songbird neostriatum. Testosterone induces neuronal addition and endothelial division in HVC. We asked if testosterone-induced angiogenesis might contribute importantly to HVC neuronal recruitment. Testosterone upregulated both VEGF and its endothelial receptor, VEGF-R2/Quek1/KDR, in HVC. This yielded a burst in local HVC angiogenesis. FACS-isolated HVC endothelial cells produced BDNF in a testosterone-dependent manner. In vivo, HVC BDNF rose by the third week after testosterone, lagging by over a week the rise in VEGF and VEGF-R2. In situ hybridization revealed that much of this induced BDNF mRNA was endothelial. In vivo, both angiogenesis and neuronal addition to HVC were substantially diminished by inhibition of VEGF-R2 tyrosine kinase. These findings suggest a causal interaction between testosterone-induced angiogenesis and neurogenesis in the adult forebrain.  相似文献   

2.
3.
Unilateral peripheral nerve chronic constriction injury (CCI) has been widely used as a research model of human neuropathic pain. Recently, CCI has been shown to induce spinal cord adult neurogenesis, which may contribute to the chronic increase in nociceptive sensitivity. Here, we show that CCI also induces rapid and profound asymmetrical anatomical rearrangements in the adult rodent cerebellum and pons. This remodelling occurs throughout the hindbrain, and in addition to regions involved in pain processing, also affects other sensory modalities. We demonstrate that these anatomical changes, partially reversible in the long term, result from adult neurogenesis. Neurogenic markers Mash1, Ngn2, doublecortin and Notch3 are widely expressed in the rodent cerebellum and pons, both under normal and injured conditions. CCI‐induced hindbrain structural plasticity is absent in Notch3 knockout mice, a strain with impaired neuronal differentiation, demonstrating its dependence on adult neurogenesis. Grey matter and white matter structural changes in human brain, as a result of pain, injury or learned behaviours have been previously detected using non‐invasive neuroimaging techniques. Because neurogenesis‐mediated structural plasticity is thought to be restricted to the hippocampus and the subventricular zone, such anatomical rearrangements in other parts of the brain have been thought to result from neuronal plasticity or glial hypertrophy. Our findings suggest the presence of extensive neurogenesis‐based structural plasticity in the adult mammalian brain, which may maintain a memory of basal sensory levels, and act as an adaptive mechanism to changes in sensory inputs.  相似文献   

4.
New neurons are born and integrated into functional circuits in the brains of many adult organisms. In virtually all of these systems, serotonin is a potent regulator of neuronal proliferation. Specific neural pathways underlying these serotonergic influences have not, however, been identified and manipulated. The goal of this study was to test whether adult neurogenesis in the crustacean brain is influenced by electrical activity in the serotonergic dorsal giant neurons (DGNs) innervating the primary olfactory processing areas, the olfactory lobes, and higher order centers, the accessory lobes. Adult‐born neurons occur in two interneuronal cell clusters that are part of the olfactory pathway. This study demonstrates that neurogenesis also continues in these areas in a dissected, perfused brain preparation, although the rate of neuronal production is lower than in brains from intact same‐sized animals. Inclusion of 10?9 M serotonin in the perfusate delivered to the dissected brain preparation restores the rate of neurogenesis to in vivo levels. Although subthreshold stimulation of the DGN does not significantly alter the rate of neurogenesis, electrical activation of a single DGN results in significant increases in neurogenesis in Cluster 10 on the same side of the brain, when compared with levels on the contralateral, unstimulated side. Measurements of serotonin levels in the perfusate using high‐performance liquid chromatography established that serotonin levels are elevated about 10‐fold during DGN stimulation, confirming that serotonin is released during DGN activity. This is the first identified neural pathway through which adult neurogenesis has been directly manipulated. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

5.
Mushroom bodies are the main integrative structures of insect brain. They receive sensory information from the eyes, the palps, and the antennae. In the house cricket, Acheta domesticus, a cluster of mushroom body neuroblasts keeps producing new interneurons during an insect's life span. The aim of the present work is to study the impact of environmental stimuli on mushroom body neurogenesis during adulthood. Crickets were reared either in an enriched environment, where they received complex environmental and congeneric stimulations or isolated in small cages and deprived of most visual, auditory, and olfactory stimuli. They then were injected with a S-phase marker, 5-bromo, 2'-deoxyuridine (BrdU) and sacrificed at different periods of their life. Neurogenesis and cell survival were estimated by counting the number of BrdU-labeled cells in the mushroom bodies. Environmentally enriched crickets were found to have an increased number of newborn cells in their mushroom bodies compared with crickets housed in cages with an impoverished environment. This effect of external factors on neurogenesis seems to be limited to the beginning of imaginal life. Furthermore, no cell loss could be detected among the newborn neurons in either environmental situation, suggesting that cell survival was not affected by the quality of the environment. Considering vertebrate studies which showed that enriched environment increases hippocampal cell survival and improves animal performances in spatial learning tests, we suggest that the increased number of interneurons produced in an integrative brain structure after exposure to enriched environment could contribute to adaptive behavioral performances in adult insects.  相似文献   

6.
Dopaminergic receptors are expressed on neural precursor cells (NPCs) in the subventricular zone (SVZ) and are known to regulate NPC proliferation and differentiation fate in this region. We now report that this optimally requires the simultaneous activation of both D1-like and D2-like dopaminergic receptors with the agonists Bromocriptine, SKF-38393 and 7-OH-pipat maleate (BSP) in vitro. This is consistent with our previous findings that dopamine stimulates NPC proliferation through an EGF paracrine mechanism within the SVZ. Furthermore this combined dopamine agonist therapy rescues NPC proliferation in the SVZ in the 6-OHDA animal model of PD and importantly significantly increases neuronal differentiation in the olfactory bulb to a greater extent than we showed previously with L-dopa. This result has implications for the use of dopaminergic therapies in PD and in the development of such therapies focusing on upregulating SVZ neurogenesis.  相似文献   

7.
8.
The stimulation of neurogenesis is an exciting novel therapeutic option for diseases of the central nervous system, ranging from depression to neurodegeneration. One major bottleneck in screening approaches for neurogenesis-inducing compounds is the very demanding in vivo quantification of newborn neurons based on stereological techniques. To effectively develop compounds in this area, novel fast and reliable techniques for quantification of in vivo neurogenesis are needed. In this study, we introduce a flow cytometry-based method for quantifying newly generated neurons in the brain based on the counting of cell nuclei from dissected brain regions. Important steps involve density sedimentation of the cell nuclei, and staining for the proliferation marker bromodeoxy uridine and nuclear cell type markers such as NeuN. We demonstrate the ability of the technique to detect increased neurogenesis in the hippocampus of animals which underwent physical exercise and received fluoxetine treatment.  相似文献   

9.
Throughout life, neural stem cells (NSCs) in the adult hippocampus persistently generate new neurons that modify the neural circuitry. Adult NSCs constitute a relatively quiescent cell population but can be activated by extrinsic neurogenic stimuli. However, the molecular mechanism that controls such reversible quiescence and its physiological significance have remained unknown. Here, we show that the cyclin‐dependent kinase inhibitor p57kip2 (p57) is required for NSC quiescence. In addition, our results suggest that reduction of p57 protein in NSCs contributes to the abrogation of NSC quiescence triggered by extrinsic neurogenic stimuli such as running. Moreover, deletion of p57 in NSCs initially resulted in increased neurogenesis in young adult and aged mice. Long‐term p57 deletion, on the contrary, led to NSC exhaustion and impaired neurogenesis in aged mice. The regulation of NSC quiescence by p57 might thus have important implications for the short‐term (extrinsic stimuli‐dependent) and long‐term (age‐related) modulation of neurogenesis.  相似文献   

10.
11.
Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis.  相似文献   

12.
Deisseroth K  Malenka RC 《Neuron》2005,47(6):775-777
The production of new neurons in the adult hippocampus is exquisitely regulated, and alterations in this process may underlie both normal and pathological hippocampal function. In this issue of Neuron, Tozuka et al. describe electrophysiological recordings that target proliferating progenitor cells in adult mouse hippocampal slices. They report that GABAergic synaptic inputs directly depolarize the proliferating progenitors, thereby activating molecular players that favor neuronal differentiation and providing a mechanism for direct excitation-neurogenesis coupling in vivo.  相似文献   

13.
14.
Dopamine is an important neurotransmitter implicated in the regulation of mood, motivation and movement. We have reviewed here recent data suggesting that dopamine, in addition to being a neurotransmitter, also plays a role in the regulation of endogenous neurogenesis in the adult mammalian brain. In addition, we approach a highly controversial question: can the adult human brain use neurogenesis to replace the dopaminergic neurones in the substantia nigra that are lost in Parkinson's disease?  相似文献   

15.
Cranial radiotherapy is common in pediatric oncology. Our purpose was to investigate if irradiation (IR) to the immature brain would increase the susceptibility to hypoxic‐ischemic injury in adulthood. The left hemisphere of postnatal day 10 (P10) mice was irradiated with 8 Gy and subjected to hypoxia‐ischemia (HI) on P60. Brain injury, neurogenesis and inflammation were evaluated 30 days after HI. IR alone caused significant hemispheric tissue loss, or lack of growth (2.8 ± 0.42 mm3, p < 0.001). Tissue loss after HI (18.2 ± 5.8 mm3, p < 0.05) was synergistically increased if preceded by IR (32.0 ± 3.5 mm3, p < 0.05). Infarct volume (5.1 ± 1.6 mm3) nearly doubled if HI was preceded by IR (9.8 ± 1.2 mm3, p < 0.05). Pathological scoring revealed that IR aggravated hippocampal, cortical and striatal, but not thalamic, injury. Hippocampal neurogenesis decreased > 50% after IR but was unchanged by HI alone. The number of newly formed microglia was three times higher after IR + HI than after HI alone. In summary, IR to the immature brain produced long‐lasting changes, including decreased hippocampal neurogenesis, subsequently rendering the adult brain more susceptible to HI, resulting in larger infarcts, increased hemispheric tissue loss and more inflammation than in non‐irradiated brains.  相似文献   

16.
ZUOMINGXUE 《Cell research》1998,8(2):151-158
It was the first time demonstrated by us that the number of newborn neurons was increased after making lesion in forebrain of adult ring dove(Streptopelia risoria) by means of autoradiography and imunohistochemistry,Neurogensis in the adult avian is restricted to the telencephalon.In doves with bilateral electrolytic lesion of nucleus ectostriatum(E),the mean mumber of proliferating cells in the lateral ventricular zone(LVZ) and newborn neurons in the forebrain increased by 1.95 times and 2.38 times respectively as compared with that in intact doves.The most remarkable incresase of neurogenesis induced by nucleus ectostriatum lesions was found at the anteriorposterior level 3(L3),where the lesion site was located.These results showed that the electrolytic brain lesion al tered the distribution pattern of proliferating cells in the LVZ and resulted in increase of the number of newborn neureons in the non-VZ areas of forebrain.The changes in number and distribution pattern of proliferating cells in LVZ and newbon neurons in forebrain may be dependent on site of lesion.Studies on the relationship between proliferating cells in LVZ and newly generated neurons in non-VZ aresa may help to understand the mechanism of brain plasticity and development.  相似文献   

17.
INTRODUCTIONItisacommonstatementthatillhighervertebratestheCNScompletesneuronaldevelopmentduringthepre--andprenatalperiods.Preliminaryworkshowedthatneurogenesisconfinuedinthebrainofsongbirdduringadulthood.Manynewbornneuronsareincorporatedintothevocal-cont…  相似文献   

18.
Until recently, it was believed that adult brains were unable to generate any new neurons. However, it is now commonly known that stem cells remain in the adult central nervous system and that adult vertebrates as well as adult invertebrates are currently adding new neurons in some specialized structures of their central nervous system. In vertebrates, the subventricular zone and the dentate gyrus of the hippocampus are the sites of neuronal precursor proliferation. In some insects, persistent neurogenesis occurs in the mushroom bodies, which are brain structures involved in learning and memory and considered as functional analogues of the hippocampus. In both vertebrates and invertebrates, secondary neurogenesis (including neuroblast proliferation and neuron differentiation) appears to be regulated by hormones, transmitters, growth factors and environmental cues. The functional implications of adult neurogenesis have not yet been clearly demonstrated and comparative study of the various model systems could contribute to better understand this phenomenon. Here, we review and discuss the common characteristics of adult neurogenesis in the various animal models studied so far.  相似文献   

19.
Research in the field of adult neurogenesis has seen substantial progress over recent years. Here we discuss some of the major focus areas for future investigation: neural stem cell heterogeneity, the role of latent stem cells, and the extent of neurogenesis in the adult human brain.  相似文献   

20.
New neurons are generated throughout life in distinct areas of the mammalian brain. This process, called adult neurogenesis, has challenged previously held concepts about adult brain plasticity and opened novel therapeutic avenues to treat certain neuro-psychiatric diseases. Here, we review the current knowledge regarding the fate and potency of neural stem cells (NSCs), as well as the mechanisms underlying neuronal differentiation and subsequent integration. Furthermore, we discuss the functional significance of adult neurogenesis in health and disease, and offer brief insight into the future directions of the adult neurogenesis field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号