首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

5.
[目的]谷氨酸棒杆菌是重要的氨基酸生产菌株,本研究针对SigE与ZAS家族蛋白CseE相互作用机制进行探索研究,重点分析CseE突变体影响与SigE结合能力的机制。[方法]本研究选择谷氨酸棒杆菌ATCC 13032来源的SigE和CseE蛋白为研究目标,利用遗传学方法获得过表达的重组谷氨酸棒杆菌,通过RT-qPCR研究SigE调控sigEcseE的转录情况。同时,利用ITC和His pull-down实验验证ZAS家族的CseE蛋白与Zn2+及SigE的结合情况。之后对CseE蛋白进行功能域分析、多序列比对,研究功能域关键氨基酸位点对SigE结合能力的影响。其次对SigE和CseE蛋白进行分子对接和动力学模拟,分析关键氨基酸影响其结合的机制。[结果]谷氨酸棒杆菌SigE调控基因sigEcseE的转录并且其活性受CseE蛋白控制。CseE蛋白为ZAS家族蛋白,具有Zn2+结合能力。CseEHis83A、CseEcys87A和CseEcys90A突变体不会影响与SigE的结合能力,而CseEC87A-C90A和CseEHis83A-C87A-C90A突变体与SigE的结合能力略有下降。分子动力学模拟发现SigE-CseEC87A-C90A和SigE-CseEHis83A-C87A-C90A之间的结合能量为-17.23 kcal/mol和-14.06 kcal/mol,分别比未突变体系结合能量降低22.8%及36.9%。[结论]谷氨酸棒杆菌SigE通过聚集RNA聚合酶来调控基因sigEcseE的表达。CseE蛋白属于ZAS家族,具有Zn2+结合能力同时通过与SigE蛋白互作来抑制SigE活性。CseEC87A-C90A及CseEHis83A-C87A-C90A突变体能影响与SigE结合的能力,减弱对SigE活性的控制。本研究产生的三维结构和确定的氨基酸关键位点为后续探索谷氨酸棒杆菌SigE和CseE响应环境压力机制提供了理论基础。  相似文献   

6.
7.
In the present study, 151 genes showed a significant change in their expression levels in Corynebacterium glutamicum ATCC 21300 compared with those of C. glutamicum ATCC 13032. Of these 151 genes, 56 genes (2%) were up-regulated and 95 genes (3%) were down-regulated. RNA sequencing analysis also revealed that 11 genes, involved in the L-lysine biosynthetic pathway of C. glutamicum, were up- or down-regulated compared with those of C. glutamicum ATCC 13032. Of the 151 genes, 10 genes were identified to have mutations including SNP (9 genes) and InDel (1 gene). This information will be useful for genome breeding of C. glutamicum to develop an industrial amino acid-producing strain with minimal mutation.  相似文献   

8.
9.
The clinical isolate Corynebacterium xerosis M82B carries the 50-kb R-plasmid pTP10 that confers resistance to the antibiotics chloramphenicol, kanamycin, erythromycin, and tetracycline. A detailed restriction map of pTP10 was constructed by cloning and analyzing restriction fragments of pTP10 in Escherichia coli . The resistance determinants of pTP10 were located by studying the phenotype of the recombinant plasmids in E. coli and Corynebacterium glutamicum . Restriction patterns of fragments encoding the kanamycin and erythromycin resistances revealed striking similarity to the kanamycin resistance of transposon Tn903 and the erythromycin resistance on plasmid pNG2 from Corynebacterium diphtheriae, respectively. Expression of the resistance determinants in E. coli and C. glutamicum ATCC 13032 led to high resistance levels in both strains, with the exception of the tetracycline resistance gene, which could be expressed only in C. glutamicum. Furthermore, the erythromycin resistance gene was found to be located on a transposable element which is functional in C. glutamicum strains.  相似文献   

10.
11.
12.
The activity of bacteriophages and phage-related mobile elements is a major source for genome rearrangements and genetic instability of their bacterial hosts. The genome of the industrial amino acid producer Corynebacterium glutamicum ATCC 13032 contains three prophages (CGP1, CGP2, and CGP3) of so far unknown functionality. Several phage genes are regularly expressed, and the large prophage CGP3 (∼190 kbp) has recently been shown to be induced under certain stress conditions. Here, we present the construction of MB001, a prophage-free variant of C. glutamicum ATCC 13032 with a 6% reduced genome. This strain does not show any unfavorable properties during extensive phenotypic characterization under various standard and stress conditions. As expected, we observed improved growth and fitness of MB001 under SOS-response-inducing conditions that trigger CGP3 induction in the wild-type strain. Further studies revealed that MB001 has a significantly increased transformation efficiency and produced about 30% more of the heterologous model protein enhanced yellow fluorescent protein (eYFP), presumably as a consequence of an increased plasmid copy number. These effects were attributed to the loss of the restriction-modification system (cg1996-cg1998) located within CGP3. The deletion of the prophages without any negative effect results in a novel platform strain for metabolic engineering and represents a useful step toward the construction of a C. glutamicum chassis genome of strain ATCC 13032 for biotechnological applications and synthetic biology.  相似文献   

13.
Summary The genes encoding the two successive enzymes of the lysine biosynthetic pathway, dihydrodipicolinate synthase (dapA) and dihydrodipicolinate reductase (dapB), have been isolated from Corynebacterium glutamicum by heterologous complementation of Escherichia coli mutants. The two genes reside on a single 3.8-kb chromosomal fragment. They were subcloned as non overlapping fragments on an E. coli/C. glutamicum shuttle vector and introduced into C. glutamicum. This resulted in overexpression of both enzyme activities which was irrespective of the orientation of the inserts and comparable to that obtained with the large 3.8-kb fragment. Therefore, both genes are located in close proximity to each other on the C. glutamicum chromosome, but are apparently independently transcribed.  相似文献   

14.
15.
The genome of Corynebacterium glutamicum ATCC 13032 contains two genes, rpf1 and rpf2, encoding proteins with similarities to the essential resuscitation-promoting factor (Rpf) of Micrococcus luteus. Both the Rpf1 (20.4 kDa) and Rpf2 (40.3 kDa) proteins share the so-called Rpf motif, a highly conserved protein domain of approximately 70 amino acids, which is also present in Rpf-like proteins of other gram-positive bacteria with a high G+C content of the chromosomal DNA. Purification of the C. glutamicum Rpf2 protein from concentrated supernatants, SDS-PAGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified modified Rpf2 variants with increased or reduced mobility when compared with the calculated size of Rpf2. A Western blot-based enzyme immunoassay demonstrated glycosylation of the Rpf2 variants with higher molecular masses. Galactose and mannose were identified as two components of the oligosaccharide portion of the Rpf2 glycoprotein by capillary gas chromatography coupled to mass spectrometry. The Rpf2 protein was localized on the surface of C. glutamicum with the use of immuno-fluorescence microscopy. C. glutamicum strains with defined deletions in the rpf1 or rpf2 gene or simultaneous deletions in both rpf genes were constructed, indicating that the rpf genes are neither individually nor collectively essential for C. glutamicum. The C. glutamicum rpf double mutant displayed slower growth and a prolonged lag phase after transfer of long-stored cells into fresh medium. The addition of supernatant from exponentially growing cultures of the rpf double mutant, the wild type or C. glutamicum strains with increased expression of the rpf1 or rpf2 gene significantly reduced the lag phase of long-stored wild-type and rpf single mutant strains, but addition of purified His-tagged Rpf1 or Rpf2 did not. In contrast, the lag phase of the C. glutamicum rpf double mutant was not affected upon addition of these culture supernatants.  相似文献   

16.
17.
Corynebacterium glutamicum, a gram-positive soil bacterium, has been regarded as an aerobe because its growth by fermentative catabolism or by anaerobic respiration has, to this date, not been demonstrated. In this study, we report on the anaerobic growth of C. glutamicum in the presence of nitrate as a terminal electron acceptor. C. glutamicum strains R and ATCC13032 consumed nitrate and excreted nitrite during growth under anaerobic, but not aerobic, conditions. This was attributed to the presence of a narKGHJI gene cluster with high similarity to the Escherichia coli narK gene and narGHJI operon. The gene encodes a nitrate/nitrite transporter, whereas the operon encodes a respiratory nitrate reductase. Transposonal inactivation of C. glutamicum narG or narH resulted in mutants with impaired anaerobic growth on nitrate because of their inability to convert nitrate to nitrite. Further analysis revealed that in C. glutamicum, narK and narGHJI are cotranscribed as a single narKGHJI operon, the expression of which is activated under anaerobic conditions in the presence of nitrate. C. glutamicum is therefore a facultative anaerobe.  相似文献   

18.

Background  

Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032.  相似文献   

19.
During growth ofCorynebacterium glutamicum on acetate as its carbon and energy source, the expression of theptaack operon is induced, coding for the acetate-activating enzymes, which are phosphotransacetylase (PTA) and acetate kinase (AK). By transposon rescue, we identified the two genesamrG1 andamrG2 found in the deregulated transposon mutant C.glutamicum G25. TheamrG1 gene (NCBI-accession: AF532964) has a size of 732 bp, encoding a polypeptide of 243 amino acids and apparently is partially responsible for the regulation of acetate metabolism in C.glutamicum. We constructed an in-frame deletion mutant and an overexpressing strain ofamrG1 in the C.glutamicum ATCC13032 wildtype. The strains were then analyzed with respect to their enzyme activities of PTA and AK during growth on glucose, acetate and glucose or acetate alone as carbon sources. Compared to the parental strain, theamrG1 deletion mutant showed higher specific AK and PTA activities during growth on glucose but showed the same high specific activities of AK and PTA on medium containing acetate plus glucose and on medium containing acetate. In contrast to the gene deletion, overexpression of theamrG1 gene in C.glutamicum 13032 had the adverse regulatory effect. These results indicate that theamrG1 gene encodes a repressor or co-repressor of theptaack operon.  相似文献   

20.
In a manner similar to ubiquitin, the prokaryotic ubiquitin‐like protein (Pup) has been shown to target proteins for degradation via the proteasome in mycobacteria. However, not all actinobacteria possessing the Pup protein also contain a proteasome. In this study, we set out to study pupylation in the proteasome‐lacking non‐pathogenic model organism Corynebacterium glutamicum. A defined pup deletion mutant of C. glutamicum ATCC 13032 grew aerobically as the parent strain in standard glucose minimal medium, indicating that pupylation is dispensable under these conditions. After expression of a Pup derivative carrying an aminoterminal polyhistidine tag in the Δpup mutant and Ni2+‐chelate affinity chromatography, pupylated proteins were isolated. Multidimensional protein identification technology (MudPIT) and MALDI‐TOF‐MS/MS of the elution fraction unraveled 55 proteins being pupylated in C. glutamicum and 66 pupylation sites. Similar to mycobacteria, the majority of pupylated proteins are involved in metabolism or translation. Our results define the first pupylome of an actinobacterial species lacking a proteasome, confirming that other fates besides proteasomal degradation are possible for pupylated proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号