首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, it has been demonstrated that the CD40 receptor is constitutively expressed on cultured microglia at low levels. Ligation of CD40 by CD40 ligand on these cells results in microglial activation, as measured by TNF-alpha production and neuronal injury. However, the intracellular events mediating this effect have yet to be investigated. We report that ligation of microglial CD40 triggers activation of p44/42 mitogen-activated protein kinase (MAPK). This effect is evident 30 min posttreatment, and progressively declines thereafter (from 30 to 240 min). Phosphorylated p38 MAPK is not observed in response to ligation of microglial CD40 across the time course examined. Inhibition of the upstream activator of p44/42 MAPK, mitogen-activated protein/extracellular signal-related kinase kinase 1/2, with PD98059, decreases phosphorylation of p44/42 MAPK and significantly reduces TNF-alpha release following ligation of microglial CD40. Furthermore, cotreatment of microglial cells with CD40 ligand and TGF-beta1 or IL-10, or both, inhibits CD40-mediated activation of p44/42 MAPK and production of TNF-alpha in a statistically interactive manner. Taken together, these data show that ligation of microglial CD40 triggers TNF-alpha release through the p44/42 MAPK pathway, an effect that can be opposed by TGF-beta1 and IL-10.  相似文献   

2.
Ligation of CD40 has been shown to induce/stimulate the expression of tumor necrosis factor-alpha (TNF-alpha) in microglial cells. This study delineates the mechanism by which CD40 ligation regulates the expression of TNF-alpha in BV-2 microglial cells. There was very little induction of TNF-alpha by ligation of CD40 alone by either cross-linking antibodies against CD40 or recombinant CD40 ligand (CD154). The absence of any increase in TNF-alpha production by CD40 ligation alone even in CD40-overexpressed BV-2 microglial cells suggest that signal transduced by the ligation of CD40 alone is not sufficient for strong induction of TNF-alpha. However, CD40 ligation markedly induced the production of TNF-alpha as well as the expression of TNF-alpha mRNA in interferon-gamma (IFN-gamma)-stimulated BV-2 glial cells. Ligation of CD40 in CD40-overexpressed cells markedly enhanced the expression of TNF-alpha in the presence of IFN-gamma. To understand the mechanism of CD40 ligation-mediated induction/stimulation of TNF-alpha, we investigated the role of nuclear factor-kappaB (NF-kappaB) and C/EBPbeta. IFN-gamma alone was able to induce the activation of NF-kappaB as well as C/EBPbeta. However, CD40 ligation alone in the presence or absence of CD40 overexpression induced the activation of only NF-kappaB and not that of C/EBPbeta, suggesting that the activation of NF-kappaB alone by CD40 ligation is not sufficient to induce the expression of TNF-alpha and that the activation of C/EBPbeta is also necessary for strong induction of TNF-alpha. Consistently, a dominant-negative mutant of p65 (Delta(p65)) and that of C/EBPbeta (DeltaC/EBPbeta) inhibited the expression of TNF-alpha in BV-2 microglial cells stimulated with the combination of IFN-gamma and CD40 ligand. Taken together, these studies suggest that activation of both NF-kappaB and C/EBPbeta is important for strong induction of TNF-alpha and that CD40 ligation regulates the expression of TNF-alpha by modulating the activation of only NF-kappaB but not that of C/EBPbeta.  相似文献   

3.
A D Foey  M Feldmann  F M Brennan 《Cytokine》2001,16(4):131-142
Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced in the rheumatoid arthritis (RA) joint by macrophages/monocytes and infiltrating peripheral blood derived lymphocytes. Recent data suggest a role for physical cell-to-cell interactions in the production of IL-10. In this report, we have investigated the signalling mechanisms involved in IL-10 production by peripheral blood-derived macrophages upon interaction with fixed CD40L transfectants. IL-10 and tumour necrosis factor alpha (TNF-alpha) are produced by macrophage colony-stimulating factor (M-CSF)-primed monocytes/macrophages in response to CD40 ligation. The utilization of the inhibitors, wortmannin and LY294002, demonstrated a role for phosphatidylinositol 3-kinase (PI3K) whereas rapamycin demonstrated p70 S6-kinase (p70S6K) involvement in the production of IL-10 by these monocytes. The production of TNF-alpha was enhanced by wortmannin and LY294002, suggesting negative regulation by PI3K; however, it was dependent on p70S6K suggesting a PI3K-independent mechanism of p70S6K activation. One alternative pathway that activates p70S6K independently of PI3K and also differentiates between IL-10 and TNF-alpha is the p42/44 mitogen-activated protein kinase (MAPK), which regulates TNF-alpha production in a PI3K-independent manner. These observations suggest that CD40 ligation induces macrophage IL-10 and TNF-alpha production, the mechanism of which is p70S6K-dependent yet bifurcates at the level of PI3K and p42/44 MAPK.  相似文献   

4.

Background

Microglial activation, characterized by p38 MAPK or p44/42 MAPK pathway signal transduction, occurs in Alzheimer''s disease (AD). Our previous studies demonstrated CD45, a membrane-bound protein tyrosine phosphatase (PTP), opposed β-amyloid (Aβ) peptide-induced microglial activation via inhibition of p44/42 MAPK. Additionally we have shown agonism of the RB isoform of CD45 (CD45RB) abrogates lipopolysaccharide (LPS)-induced microglial activation.

Methodology and Results

In this study, CD45RB modulation of Aβ peptide or LPS-activated primary cultured microglial cells was further investigated. Microglial cells were co-treated with “aged” FITC-Aβ1–42 and multiple CD45 isoform agonist antibodies. Data revealed cross-linking of CD45, particularly the CD45RB isoform, enhances microglial phagocytosis of Aβ1–42 peptide and inhibits LPS-induced activation of p44/42 and p38 pathways. Co-treatment of microglial cells with agonist CD45 antibodies results in significant inhibition of LPS-induced microglial TNF-α and IL-6 release through p44/42 and/or p38 pathways. Moreover, inhibition of either of these pathways augmented CD45RB cross-linking induced microglial phagocytosis of Aβ1–42 peptide. To investigate the mechanism(s) involved, microglial cells were co-treated with a PTP inhibitor (potassium bisperoxo [1,10-phenanthroline oxovanadate; Phen]) and Aβ1–42 peptides. Data showed synergistic induction of microglial activation as evidenced by TNF-α and IL-6 release; both of which are demonstrated to be dependent on increased p44/42 and/or p38 activation. Finally, it was observed that cross-linking of CD45RB in the presence of Aβ1–42 peptide, inhibits co-localization of microglial MHC class II and Aβ peptide; suggesting CD45 activation inhibits the antigen presenting phenotype of microglial cells.

Conclusion

In summary, p38 MAPK is another novel signaling pathway, besides p44/42, in which CD45RB cross-linking negatively regulates microglial Aβ phagocytosis while increasing potentially neurotoxic inflammation. Therefore, agonism of CD45RB PTP activity may be an effective therapeutic target for novel agents to treat AD due to its Aβ lowering, and inflammation reducing, properties that are particularly targeted at microglial cells. Such treatments may be more effective with less potential to produce systemic side-effects than therapeutics which induce non-specific, systemic down-regulation of inflammation.  相似文献   

5.
Human formyl peptide receptor (FPR)-like 1 (FPRL1) and its mouse homologue mFPR2 are functional receptors for a variety of exogenous and host-derived chemotactic peptides, including amyloid beta 1-42 (Abeta(42)), a pathogenic factor in Alzheimer's disease. Because mFPR2 in microglial cells is regulated by proinflammatory stimulants including TLR agonists, in this study we investigated the capacity of IFN-gamma and the CD40 ligand (CD40L) to affect the expression and function of mFPR2. We found that IFN-gamma, when used alone, induced mFPR2 mRNA expression in a mouse microglial cell line and primary microglial cells in association with increased cell migration in response to mFPR2 agonists, including Abeta(42). IFN-gamma also increased the endocytosis of Abeta(42) by microglial cells via mFPR2. The effect of IFN-gamma on mFPR2 expression in microglial cells was dependent on activation of MAPK and IkappaB-alpha. IFN-gamma additionally increased the expression of CD40 by microglial cells and soluble CD40L significantly promoted cell responses to IFN-gamma during a 6-h incubation period by enhancing the activation of MAPK and IkappaB-alpha signaling pathways. We additionally found that the effect of IFN-gamma and its synergy with CD40L on mFPR2 expression in microglia was mediated in part by TNF-alpha. Our results suggest that IFN-gamma and CD40L, two host-derived factors with increased concentrations in inflammatory central nervous system diseases, may profoundly affect microglial cell responses in the pathogenic process in which mFPR2 agonist peptides are elevated.  相似文献   

6.
CD40 is expressed and functional on neuronal cells   总被引:6,自引:0,他引:6  
We show here that CD40 mRNA and protein are expressed by neuronal cells, and are increased in differentiated versus undifferentiated N2a and PC12 cells as measured by RT-PCR, western blotting and immunofluorescence staining. Additionally, immunohistochemistry reveals that neurons from adult mouse and human brain also express CD40 in situ. CD40 ligation results in a time-dependent increase in p44/42 MAPK activation in neuronal cells. Furthermore, ligation of CD40 opposes JNK phosphorylation and activity induced by NGF-beta removal from differentiated PC12 cells or serum withdrawal from primary cultured neurons. Importantly, CD40 ligation also protects neuronal cells from NGF-beta or serum withdrawal-induced injury and affects neuronal differentiation. Finally, adult mice deficient for the CD40 receptor demonstrate neuronal dysfunction as evidenced by decreased neurofilament isoforms, reduced Bcl-x(L):Bax ratio, neuronal morphological change, increased DNA fragmentation, and gross brain abnormality. These changes occur with age, and are clearly evident at 16 months. Taken together, these data demonstrate a role of CD40 in neuronal development, maintenance and protection in vitro and in vivo.  相似文献   

7.
8.
The present study was undertaken to explore the role of interleukin-12 (IL-12) p40 in the expression of TNF-alpha in microglia. Interestingly, we have found that IL-12 p70, p402 (the p40 homodimer) and p40 (the p40 monomer) dose-dependently induced the production of TNF-alpha and the expression of TNF-alpha mRNA in BV-2 microglial cells. In addition to BV-2 microglial cells, p70, p402 and p40 also induced the production of TNF-alpha in mouse primary microglia and peritoneal macrophages. As the activation of both NF-kappaB and CCAAT/enhancer binding protein beta (C/EBPbeta) is important for the expression of TNF-alpha in microglial cells, we investigated the effect of p40 on the activation of NF-kappaB as well as C/EBPbeta. Activation of NF-kappaB as well as C/EBPbeta by p40 and inhibition of p40-induced expression of TNF-alpha by Deltap65, a dominant-negative mutant of p65, and DeltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggests that p40 induces the expression of TNF-alpha through the activation of NF-kappaB and C/EBPbeta. In addition, we show that p40 induced the activation of both extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). Interestingly, PD98059, an inhibitor of ERK, inhibited p40-induced expression of TNF-alpha through the inhibition of C/EBPbeta, but not that of NF-kappaB, whereas SB203580, an inhibitor of p38 MAPK, inhibited p40-induced expression of TNF-alpha through the inhibition of both NF-kappaB and C/EBPbeta. This study delineates a novel biological function of p40 in inducing TNF-alpha in microglia and macrophages.  相似文献   

9.
Activation of microglia, the resident macrophages in the CNS, plays a significant role in neuronal death or degeneration in a broad spectrum of CNS disorders. Recent studies indicate that nanomolar concentrations of the serine protease, thrombin, can activate microglia in culture. However, in contrast to other neural cells responsive to thrombin, the participation of novel protease-activated receptors (PARs), such as the prototypic thrombin receptor PAR1, in thrombin-induced microglial activation was cast in doubt. In this report, by utilizing primary microglial cultures from PAR1 knockout (PAR1-/-) mice, application of the PAR1 active peptide TRAP-6 (SFLLRN) in comparison to a scrambled peptide (LFLNR), we have unambiguously demonstrated that murine microglia constitutively express PAR1 mRNA that is translated into fully functional protein. Activation of the microglial PAR1 induces a rapid cytosolic free [Ca2+]i increase and transient activation of both p38 and p44/42 mitogen-activated protein kinases. Moreover, although in part, this PAR1 activation directly contributes to thrombin-induced microglial proliferation. Furthermore, although not directly inducing tumor necrosis factor-alpha (TNF-alpha) release, PAR1 activation up-regulates microglial CD40 expression and potentiates CD40 ligand-induced TNF-alpha production, thus indirectly contributing to microglial activation. Taken together, these results demonstrate an essential role of PAR1 in thrombin-induced microglial activation. In addition, strategies aimed at blocking thrombin signaling through PAR1 may be therapeutically valuable for diseases associated with cerebral vascular damage and significant inflammation with microglial activation.  相似文献   

10.
We have previously shown that macrophages (Mphi) can be activated by CD40 ligation to become cytotoxic against tumor cells in vitro. Here we show that treatment of mice with agonistic anti-CD40 mAb (anti-CD40) induced up-regulation of intracellular TLR9 in Mphi and primed them to respond to CpG-containing oligodeoxynucleotides (CpG), resulting in synergistic activation. The synergy between anti-CD40 and CpG was evidenced by increased production of IFN-gamma, IL-12, TNF-alpha, and NO by Mphi, as well as by augmented apoptogenic effects of Mphi against tumor cells in vitro. The activation of cytotoxic Mphi after anti-CD40 plus CpG treatment was dependent on IFN-gamma but not TNF-alpha or NO, and did not require T cells and NK cells. Anti-CD40 and CpG also synergized in vivo in retardation of tumor growth in both immunocompetent and immunodeficient mice. Inactivation of Mphi in SCID/beige mice by silica treatment abrogated the antitumor effect. Taken together, our results show that Mphi can be activated via CD40/TLR9 ligation to kill tumor cells in vitro and inhibit tumor growth in vivo even in immunocompromised tumor-bearing hosts, indicating that this Mphi-based immunotherapeutic strategy may be appropriate for clinical testing.  相似文献   

11.
Interaction of CD44, an adhesion molecule, with its ligand, hyaluronan (HA), in monocytic cells plays a critical role in cell migration, inflammation, and immune responses. Most cell types express CD44 but do not bind HA. The biological functions of CD44 have been attributed to the generation of the functionally active, HA-adhesive form of this molecule. Although lipopolysaccharide (LPS) and cytokines induce HA-adhesive CD44, the molecular mechanism underlying this process remains unknown. In this study, we show that LPS-induced CD44-mediated HA (CD44-HA) binding in monocytes is regulated by endogenously produced tumor necrosis factor (TNF)-alpha and IL-10. Furthermore, p38 mitogen-activated protein kinase (MAPK) activation was required for LPS- and TNF-alpha-induced, but not IL-10-induced, CD44-HA-binding in normal monocytes. To dissect the signaling pathways regulating CD44-HA binding independently of cross-regulatory IL-10-mediated effects, IL-10-refractory promonocytic THP-1 cells were employed. LPS-induced CD44-HA binding in THP-1 cells was regulated by endogenously produced TNF-alpha. Our results also suggest that lysosomal sialidase activation may be required for the acquisition of the HA-binding form of CD44 in LPS- and TNF-alpha-stimulated monocytic cells. Studies conducted to understand the role of MAPKs in the induction of sialidase activity revealed that LPS-induced sialidase activity was dependent on p42/44 MAPK-mediated TNF-alpha production. Blocking TNF-alpha production by PD98059, a p42/44 inhibitor, significantly reduced the LPS-induced sialidase activity and CD44-HA binding. Subsequently, TNF-alpha-mediated p38 MAPK activation induced sialidase activity and CD44-HA binding. Taken together, our results suggest that TNF-alpha-induced p38 MAPK activation may regulate the induction of functionally active HA-binding form of CD44 by activating sialidase in LPS-stimulated human monocytic cells.  相似文献   

12.
We tested the impact of CD40 engagement on the production of vascular endothelial growth factor (VEGF) from rheumatoid synovial fibroblasts. Fibroblast-like synovial cells (FLS) were prepared from the synovial tissues of rheumatoid arthritis patients and cultured in the presence of CD40 ligand-transfected (CD40L+) L cells. VEGF levels were determined in the culture supernatants by ELISA. Stimulation of FLS by CD40L+ L cells increased the production of VEGF by 4.1-fold over the constitutive levels of unstimulated FLS. The CD40L on activated T cells from rheumatoid synovial fluid also up-regulated VEGF production from FLS. Neither indomethacin nor Abs to IL-1beta, TNF-alpha, and TGF-beta did affect CD40L-induced VEGF production. Stimulation of FLS with TNF-alpha, IL-1beta, and TGF-beta increased VEGF production by 1.6-, 2.0-, and 5.2-fold, respectively, and displayed an additive effect on the production of VEGF by CD40L. VEGF mRNA expression was also up-regulated by the stimulation of FLS with membranes from the CD40L+ L cells. Dexamethasone completely abrogated CD40L-induced VEGF production. In addition, pyrrolidine dithiocarbamate partially down-regulated CD40L-induced VEGF production, showing that the NF-kappaB pathway was partly involved in the signaling of CD40L leading to VEGF production. Collectively, these results suggest that the interaction between CD40 on synovial fibroblasts and CD40L expressed on activated T lymphocytes may be directly involved in the neovascularization in rheumatoid synovitis by enhancing the production of VEGF.  相似文献   

13.
There is accumulating evidence that interleukin 12 (IL-12) is involved in the pathogenesis of multiple sclerosis. In the periphery, this cytokine is produced by antigen-presenting cells (APCs) following interaction with activated T cells. CD40 ligation plays a crucial role in this production. Microglial cells are thought to play a major role in antigen presentation in the central nervous system. In this work, we examined IL-12 production by human primary microglial cells after CD40 ligation. These cells expressed CD40 and MHC class II following interferon-gamma activation. IL-12 p40 mRNA and protein, but not bioactive IL-12 p70, were detected in response to direct CD40 activation. Microglial cells co-cultured with activated allogenic CD4+ T lymphocytes also produced IL-12 p40 but not IL-12 p70. This IL-12 p40 production was inhibited by anti-CD40 ligand. Altogether, these results suggest that CD40-CD40-ligand interaction provides a signal that triggers IL-12 p40 expression. However, other interaction(s) may be required during antigen presentation for bioactive heterodimeric IL-12 p70 to be produced by microglial cells.  相似文献   

14.
CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet aggregation in response to a sub-threshold concentration of collagen. This study demonstrates that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent an important target against thrombo-inflammatory disorders.  相似文献   

15.
The pattern recognition receptor CD36 initiates a signaling cascade that promotes microglial activation and recruitment to beta-amyloid deposits in the brain. In the present study we identify the focal adhesion-associated proteins p130Cas, Pyk2, and paxillin as novel members of the tyrosine kinase signaling pathway downstream of CD36 and show that assembly of this complex is essential for microglial migration. In primary microglia and macrophages exposed to beta-amyloid, the scaffolding protein p130Cas is rapidly tyrosine-phosphorylated and co-localizes with CD36 to membrane ruffles contemporaneous with F-actin polymerization. These beta-amyloid-stimulated events are not detected in CD36 null cells and are dependent on CD36 activation of Src family tyrosine kinases. Fyn, a Src kinase known to interact with CD36, co-precipitates with p130Cas and is an essential upstream intermediate in the signaling pathways leading to phosphorylation of the p130Cas substrate domain. Furthermore, the p130Cas-interacting kinase Pyk2 and the cytoskeletal adapter protein paxillin also demonstrate CD36-dependent phosphorylation, identifying these focal adhesion molecules as additional members of this beta-amyloid signaling cascade. Disruption of this p130Cas complex by small interfering RNA silencing inhibits p44/42 mitogen-activated protein kinase phosphorylation and microglial migration, illustrating the importance of this pathway in microglial activation and recruitment. Together, these data are the first to identify the signaling cascade that directly links CD36 to the actin cytoskeleton and, thus, implicates it in diverse processes such as cellular migration, adhesion, and phagocytosis.  相似文献   

16.
Increasing evidence suggests that CD45, a transmembrane protein tyrosine phosphatase, is an important modulator of macrophage activation. Microglia, resident brain macrophages, express CD45 and proliferate under pathologic conditions. In this study, we examined the role of CD45 in modulating GM-CSF-induced proliferation and signal transduction in primary human microglial cultures. Soluble, but not immobilized anti-CD45RO induced tyrosine phosphatase activity and inhibited GM-CSF-induced microglial proliferation. Microglial proliferation was also inhibited by PP2 (Src inhibitor), LY294002 (PI3K inhibitor), and U0126 (MEK inhibitor). GM-CSF induced phosphorylation of Jak2, Stat5, Hck (the myeloid-restricted Src kinase), Akt, Stat3, and Erk MAPKs in microglia. Of these, anti-CD45RO inhibited phosphorylation of Hck and Akt, and PP2 inhibited phosphorylation of Hck and Akt. In a macrophage cell line stably overexpressing wild-type or kinase-inactive Hck, GM-CSF increased proliferation of the control (empty vector) and wild-type but not kinase-inactive cells, and this was inhibited by anti-CD45RO. Together, these results demonstrate that, in macrophages, Hck tyrosine kinase is activated by GM-CSF, and that Hck plays a pivotal role in cell proliferation and survival by activating the PI3K/Akt pathway. Ab-mediated activation of macrophage and microglial CD45 tyrosine phosphatase may have therapeutic implications for CNS inflammatory diseases.  相似文献   

17.
The interaction between CD40 ligand (CD154) expressed on activated T cells and its receptor, CD40, has been shown to play a role in the onset and maintenance of autoimmune inflammation. Recent studies suggest that CD154+T cells also contribute to the regulation of atherogenesis due to their capacity to activate CD40+cells of the vasculature, including vascular smooth muscle cells (VSMC). The present study evaluated the signalling events initiated through CD40 ligation which culminate in VSMC chemokine production. CD40 ligation resulted in the phosphorylation/activation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, but not c-jun N-terminal kinase. Inhibition of both ERK1/2 and p38 activity abrogated CD40 stimulation of IL-8 and MCP-1 production. CD40-mediated induction of chemokines also showed dependence on the Src family kinase activity. The Src kinase inhibitor, PP2, was found to inhibit CD40-induced phosphorylation of ERK1/2 as well as activation of IkappaB kinase. An evaluation of Src kinases that may be important in CD40 signalling identified Lyn as a potential candidate. These data indicate that CD40 signalling in VSMC activates a Src family kinase-initiated pathway that results in the induction of MAPK activities required for successful induction of chemokine synthesis.  相似文献   

18.
The role of endothelial progenitor cells in vascular repair is related to their incorporation at sites of vascular lesions, differentiation into endothelial cells, and release of various angiogenic factors specifically by a subset of early outgrowth endothelial progenitor cells (EOCs). It has been shown that patients suffering from cardiovascular disease exhibit increased levels of circulating and soluble CD40 ligand (sCD40L), which may influence the function of EOCs. We have previously shown that the inflammatory receptor CD40 is expressed on EOCs and its ligation with sCD40L impairs the anti-platelet function of EOCs. In the present study, we aimed at investigating the effect of sCD40L on the function of EOCs in endothelial repair. Human peripheral blood mononuclear cell-derived EOCs express CD40 and its adaptor proteins, the tumor necrosis factor receptor-associated factors; TRAF1, TRAF2 and TRAF3. Stimulation of EOCs with sCD40L increased the expression of TRAF1, binding of TRAF2 to CD40 and phosphorylation of p38 mitogen activated protein kinase (MAPK). In an in vitro wound healing assay, stimulation of EOCs with sCD40L increased the release of matrix metalloproteinase 9 (MMP-9) in a concentration-dependent manner and significantly enhanced the angiogenic potential of cultured human umbilical vein endothelial cells (HUVECs). Inhibition of p38 MAPK reversed sCD40L-induced MMP-9 release by EOCs, whereas inhibition of MMP-9 reversed their pro-angiogenic effect on HUVECs. This study reveals the existence of a CD40L/CD40/TRAF axis in EOCs and shows that sCD40L increases the pro-angiogenic function of EOCs on cultured HUVECs by inducing a significant increase in MMP-9 release via, at least, the p38 MAPK signaling pathway.  相似文献   

19.
A gastric cancer (GC) cell line, AGS, has high-level expression of CD40, a tumor necrosis factor receptor (TNFR) family member. CD40 is present on the surfaces of a large variety of cells, including B cells, endothelial cells, dendritic cells and some carcinoma cells, and delivers signals regulating diverse cellular responses, such as proliferation, differentiation, growth suppression, and cell death. In this research, we studied the effects of different forms of CD40 stimulation on AGS cells by flow cytometry, Western blotting and siRNA transfection. We found that different forms of CD40 stimulation, either recombinant soluble CD40L (sCD40L, ligation) or agonist anti-CD40 antibody (cross-linking), induced different effects in AGS gastric cancer cells, proliferation or apoptosis. We also showed that VEGF provided a significant contribution to sCD40L-induced proliferation, while agonist anti-CD40 antibody induced GADD45 upregulation and promoted apoptosis.  相似文献   

20.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号