首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In the 1940's the root-knot nematode resistance gene (Mi) was introgressed into the cultivated tomato from the wild species, L. peruvianum, and today it provides the only form of genetic resistance against this pathogen. We report here the construction of a high resolution RFLP map around the Mi gene that may aid in the future cloning of this gene via chromosome walking. The map covers the most distal nine map units of chromosome 6 and contains the Mi gene, nine RFLP markers, and one isozyme marker (Aps-1). Based on the analysis of more than 1,000 F2 plants from four crosses, we were able to pinpoint the Mi gene to the interval between two of these markers — GP79 and Aps-1. In crosses containing the Mi gene, this interval is suppressed in recombination and is estimated to be 0.4 cM in length. In contrast, for a cross not containing Mi, the estimated map distance is approximately 5 times greater (ca. 2 cM).Using RFLP markers around Mi as probes, it was possible to classify nematode resistant tomato varieties into three types based on the amount of linked peruvianum DNA still present. Two of these types (representing the majority of the varieties tested) were found to still contain more than 5 cM of peruvianum chromosome — a result that may explain some of the negative effects (e.g. fruit cracking) associated with nematode resistance. The third type (represented by a single variety) is predicted to carry a very small segment of peruvianum DNA (<2 cM) and may be useful in the identification of additional markers close to Mi and in the orientation of clones during a chromosome walk to clone the gene.  相似文献   

2.
Summary The Mi gene originating from the wild tomato species Lycopersicon peruvianum confers resistance to all major root knot nematodes (Meloidogyne spp.). This single dominant gene is located on chromosome 6 and is very closely linked to the acid phosphatase-1 (Aps-1) locus. Resistance to nematodes has been introgressed into various cultivars of the cultivated tomato (L. esculentum), in many cultivars along with the linked L. peruvianum Aps-1 1 allele. By using a pair of nearly isogenic lines differing in a small chromosomal region containing the Mi and Aps-1 loci, we have identified two RFLP markers, GP79 and H6A2c2, which are located in the introgressed L. peruvianum region. Analysis of a test panel of 51 L. esculentum genotypes of various origins indicated that GP79 is very tightly linked to the Mi gene and allows both homozygous and heterozygous nematode-resistant genotypes to be distinguished from susceptible genotypes, irrespective of their Aps-1 alleles. Marker H6A2c2 is linked to the Aps-1 locus and is capable of discriminating between the L. peruvianum Aps-1 1 allele and the L. esculentum Aps-1 3 and Aps-1 + alleles. In combination, these RFLP markers may provide a powerful tool in breeding tomatoes for nematode resistance.  相似文献   

3.
 The root-knot nematode resistance gene Mi-1 in tomato has long been thought to be located in the pericentromeric heterochromatin region of the long arm of chromosome 6 because of its very tight genetic linkage (approx. 1 cM) to the markers Aps-1 (Acid phosphatase 1) and yv (yellow virescent). Using Mi-BAC clones and an Aps-1 YAC clone in fluorescence in situ hybridisation (FISH) to pachytene chromosomes we now provide direct physical evidence showing that Mi-1 is located at the border of the euchromatin and heterochromatin regions in the short arm (6S) and Aps-1 in the pericentromeric heterochromatin of the long arm (6L) close to the euchromatin. Taking into account both the estimated DNA content of hetero- and euchromatin regions and the compactness of the tomato chromosomes at pachytene (2 Mb/μm), our data suggest that Mi-1 and Aps-1 are at least 40 Mb apart, a base pair-to-centiMorgan relationship that is more than 50-fold higher than the average value of 750 kb/cM of the tomato genome. An integrated cytogenetic-molecular map of chromosome 6 is presented that provides a framework for physical mapping. Received: 24 July 1998 / Accepted: 14 August 1998  相似文献   

4.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

5.
With a view to cloning the root-knot nematode resistance gene Mi in tomato by chromosome walking, we have developed a molecular probe for the tightly linked acid phosphatase-1 (Aps-1) locus. The acid phosphatase-1 allozyme (APS-11), encoded by the Aps-1 1 allele originating from Lycopersicon peruvianum, was purified to apparent homogeneity from tomato roots and suspension cells. Microsequencing of CNBr and tryptic peptides generated from APS-11 provided a partial amino acid sequence, which accounted for approximately 23% of the protein and revealed two stretches of homology with soybean proteins KSH3 and VSP27, comprising 22 matches within 26 amino acid residues. The partial amino acid sequence information enabled us to isolate a 2.4 kb genomic Aps-1 1 sequence by means of the polymerase chain reaction (PCR), primed by degenerate pools of oligodeoxyribonucleotides, synthesized on the basis of the amino acid sequences. Synthesis of the 2.4 kb PCR product was specific for genomic templates carrying the L. peruvianum Aps-1 1 allele. Crucial to the priming specificity and the synthesis of the 2.4 kb genomic sequence was the use of degenerate primer pools in which the number of different primer species was limited by incorporating deoxyinosine phosphate residues at three and four base ambiguities. In using cDNA as a template, a 490 bp sequence was obtained, indicating a high proportion of intron sequences in the 2.4 kb genomic Aps-1 1 sequence. The Aps-1 1 origin of the PCR product was confirmed by RFLP (restriction fragment length polymorphism) analysis, using both a chromosome 6 substitution line and a pair of nearly isogenic lines, differing for a small chromosomal region around the Aps-1/Mi loci.  相似文献   

6.
The bulked segregant analysis methodology has been used to map, with microsatellite markers, two morphological mutations in the chicken: polydactyly (PO) and naked neck (NA). These autosomal mutations show partial dominance for NA, and dominance with incomplete penetrance for PO. They were mapped previously to different linkage groups of the classical map, PO to the linkage group IV and NA being linked to the erythrocyte antigen CPPP. An informative family of 70 offspring was produced by mating a sire, heterozygous for each of the mutations, to 7 dams homozygous recessive for each locus. Three DNA pools were prepared, pool PO included 20 chicks exhibiting at least one extra-toe, pool NA included 20 non-polydactyly chicks showing the typical phenotype associated with heterozygosity for the naked neck mutation, and pool NP included 20 chicks exhibiting neither of the mutant phenotypes. Typings were done on an ABI-373 automatic sequencer with 147 microsatellite markers covering most of the genome. An unbalanced distribution of sire marker alleles were detected between pool PO, and pools NA and NP, for two markers of chromosome 2p, MCW0082 and MCW0247. A linkage analysis taking into account the incomplete penetrance of polydactyly (80%) was performed with additional markers of this region and showed that the closest marker to the PO locus was MCW0071 (5 cM, lod score = 9). MCW0071 lies within the engrailed gene EN2 in the chicken. In the mouse, the homologous gene maps on chromosome 5, close to the hemimelic extra-toes mutation Hx. In the case of the NA locus, markers of chromosome 3 were selected because CPPP was mapped on this chromosome. Analysis of individual typings showed a linkage of 5.7 cM (lod score = 13) between the NA locus and ADL0237 in the distal region of chromosome 3q. These results contribute to connecting the former classical map to the molecular genetic map of the chicken, and open the way to the identification of the molecular nature of two developmental mutations of the chicken that are known to occur in many breeds of chickens.  相似文献   

7.
Hereditary hearing impairment (HI) displays extensive genetic heterogeneity. Autosomal recessive (AR) forms of prelingual HI account for ~75% of cases with a genetic etiology. A novel AR non-syndromic HI locus (DFNB47) was mapped to chromosome 2p25.1-p24.3, in two distantly related Pakistani kindreds. Genome scan and fine mapping were carried out using microsatellite markers. Multipoint linkage analysis resulted in a maximum LOD score of 4.7 at markers D2S1400 and D2S262. The three-unit support interval was bounded by D2S330 and D2S131. The region of homozygosity was found within the three-unit support interval and flanked by markers D2S2952 and D2S131, which corresponds to 13.2 cM according to the Rutgers combined linkage-physical map. This region contains 5.3 Mb according to the sequence-based physical map. Three candidate genes, KCNF1, ID2 and ATP6V1C2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

8.
Lycopersicon hirsutum G1.1560 is a wild accession of tomato that shows resistance to Oidium lycopersicum, a frequently occurring tomato powdery mildew. This resistance is largely controlled by an incompletely dominant gene Ol-1 near the Aps-1 locus in the vicinity of the resistance genes Mi and Cf-2/Cf-5. Using a new F2 population (n=150) segregating for resistance, we mapped the Ol-1 gene more accurately to a location between the RFLP markers TG153 and TG164. Furthermore, in saturating the Ol-1 region with more molecular markers using bulked segregant analysis, we were able to identify five RAPDs associated with the resistance. These RAPDs were then sequenced and converted into SCAR markers: SCAB01 and SCAF10 were L. hirsutum-specific; SCAE16, SCAG11 and SCAK16 were L. esculentum-specific. By linkage analysis a dense integrated map comprising RFLP and SCAR markers near Ol-1 was obtained. This will facilitate a map-based cloning approach for Ol-1 and marker-assisted selection for powdery mildew resistance in tomato breeding. Received: 21 June 1999 / Accepted: 1 December 1999  相似文献   

9.
The Rfm1a gene restores the fertility of msm1 cytoplasmic male-sterile lines in barley. We identified three RAPD markers linked to the Rfm1 locus (CMNB-07/800, OPI-18/900, and OPT-02/700) using isogenic lines and segregating BC1F1 and F2 populations. Using a previously developed linkage map of barley, we located CMNB-07/800 and OPT-02/700 beside MWG2218 on chromosome 6HS. The linkage between MWG2218 and the Rfm1 locus was demonstrated using the segregating BC1F1 and F2 populations. To confirm the chromosomal locations of these markers, we converted them to STSs and tested against two sets of wheat–barley chromosome addition lines. These STS markers, CMNB-07/800, OPT-02/700, and MWG2218, were amplified only in the addition lines possessing the chromosome 6H, thereby providing additional evidence the Rfm1 locus is located on chromosome 6H. Homoeologous relationships among fertility restoration genes in Triticeae are discussed. Received: 27 March 2000 / Accepted: 25 June 2000  相似文献   

10.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

11.
Summary New linkage data are presented for the situation of five previously unlocated isozymic loci of the tomato and closely related species with homosequential chromosomes.Prx-1 lies on chromosome 1, where it is also linked withSkdh-1; Aps-2 is linked withGot-4 on chromosome 8;Tpi-2 has been allocated to chromosome 4; and a linkage has been detected betweenPgi-1 andEst-4, whose respective chromosome has not yet been determined. These and previously published data have been summarized in the form of an isozyme linkage map. Twenty-two loci have thus been mapped on nine of the twelve tomato chromosomes. We discuss some new applications of mapped isozymic genes. In certain types of segregations, isozymic genes are far more efficient than morphological markers in providing linkage information. They greatly expedite the cytogenetic investigation of species hybrids and can be utilized to facilitate backcross transfers of genes from wild to cultivated taxa.  相似文献   

12.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

13.
Spinocerebellar ataxia type 2 (SCA2) is a neurodegenerative disease recently mapped to chromosome 12q close to the locus D12S84 by genetic linkage analysis. To generate additional genetic markers in the SCA2 region, we constructed a physical map of the region using yeast artificial chomosome (YAC), P1 artificial chromosome (PAC) and cosmid clones. The physical map was found to agree well with the genetic map. Three novel microsatellite markers were isolated and physically mapped. A novel approach to isolate CAG repeats directly from YAC DNAs is described. Received: 25 January 1995 / Revised: 26 September 1995  相似文献   

14.
Comparative genetic maps among the Triticeae or Gramineae provide the possibility for combining the genetics, mapping information and molecular-marker resources between different species. Dense genetic linkage maps of wheat and barley, which have a common array of molecular markers, along with deletion-based chromosome maps of Triticum aestivum L. will facilitate the construction of an integrated molecular marker-based map for the Triticeae. A set of 21 cDNA and genomic DNA clones, which had previously been used to map barley chromosome 1 (7H), were used to physically map wheat chromosomes 7A, 7B and 7D. A comparative map was constructed to estimate the degree of linkage conservation and synteny of chromosome segments between the group 7 chromosomes of the two species. The results reveal extensive homoeologies between these chromosomes, and the first evidence for an interstitial inversion on the short arm of a barley chromosome compared to the wheat homoeologue has been obtained. In a cytogenetically-based physical map of group 7 chromosomes that contain restriction-fragment-length polymorphic DNA (RFLP) and random amplified polymorphic DNA (RAPD) markers, the marker density in the most distal third of the chromosome arms was two-times higher than in the proximal region. The recombination rate in the distal third of each arm appears to be 8–15 times greater than in the proximal third of each arm where recombination of wheat chromosomes is suppressed.  相似文献   

15.
We have developed a new technique for the generation of YAC contigs in the mouse genome that is based on the ability to detect overlapping clones by hybridization of shared IRS-PCR products. As a demonstration of the technique, a 5-cM, >5 megabase contig was developed on the distal half of mouse Chromosome (Chr) 1, spanning the region from Lamb2 to At3. The contig covers roughly 5% of the genetic distance of the chromosome and is comprised of more than 80 clones; 71 probes were assigned physical order on the chromosome, of which 59 were new markers generated in this study. Eight of the new probes were shown to be polymorphic between C3H/HeJ-gld and M. spretus. Three probes were mapped on a [(C3H/HeJ-gld x M. spretus) x C3H/HeJ-gld] interspecific backcross to integrate the physical map with a high-resolution genetic map of the region.  相似文献   

16.
The mouse doublefoot (Dbf) mutant exhibits preaxial polydactyly in association with craniofacial defects. This mutation has previously been mapped to mouse chromosome 1. We have used a positional cloning strategy, coupled with a comparative sequencing approach using available human draft sequence, to identify putative candidates for the Dbf gene in the mouse and in homologous human region. We have constructed a high-resolution genetic map of the region, localizing the mutation to a 0. 4-cM (±0.0061) interval on mouse chromosome 1. Furthermore, we have constructed contiguous BAC/PAC clone maps across the mouse and human Dbf region. Using existing markers and additional sequence tagged sites, which we have generated, we have anchored the physical map to the genetic map. Through the comparative sequencing of these clones we have identified 35 genes within this interval, indicating that the region is gene-rich. From this we have identified several genes that are known to be differentially expressed in the developing mid-gestation mouse embryo, some in the developing embryonic limb buds. These genes include those encoding known developmental signaling molecules such as WNT proteins and IHH, and we provide evidence that these genes are candidates for the Dbf mutation.  相似文献   

17.
Morishima K  Nakayama I  Arai K 《Genetica》2008,132(3):227-241
In the present study, the first genetic linkage map of the loach Misgurnus anguillicaudatus was constructed with 164 microsatellite markers and a color locus, and it included 155 newly developed markers. A total of 159 microsatellite markers and a color locus were mapped in 27 linkage groups (LGs). The female map covered 784.5 cM with 153 microsatellite markers and a color locus, whereas the male map covered 662.2 cM with 119 microsatellite markers. The centromeric position in each LG was estimated by marker-centromere mapping based on half-tetrad analysis. In 4 LGs (LG2, LG3, LG4, and LG5), the centromere was estimated at the intermediate region. In LG1, LG11, and LG12, the centromere was estimated to shift from the sub-intermediate region to the end (telomeric). The number of these LGs (7) was identical to the collective number of bi-arm metacentric (5) and sub-metacentric chromosome (2) of the haploid chromosome set (n = 5) of the loach. In the other LGs, the position of the centromere was estimated at the end or outside. These results indicate satisfactory compliance between the linkage map and the chromosome set. Our map would cover approximately almost the entire loach genome because most markers were successfully mapped.  相似文献   

18.
19.
In wheat it is essential to know whether a gene is located in a high or low recombination region of the genome before initiating a map-based cloning approach. The objective of this study was to explore the potential feasibility of map-based cloning of the dominant male-sterile gene Ms3 of wheat. High-density physical maps of the short arms of the group-5 chromosomes (5AS, 5BS, and 5DS) of Triticum aestivum L. were constructed by mapping 40 DNA markers on a set of 17 homozygous deletion lines. One hundred RFLP loci were mapped: 35 on 5AS, 37 on 5BS, and 28 on 5DS. A consensus physical map was colinearly aligned with a consensus genetic map of the group-5 short arms. Sixteen of the 17 markers in the consensus genetic map encompass a genetic distance of 25 cM and correspond to the distal region (FL 0.56–0.97) of the consensus physical map. Two rice probes, RG463 and RG901, previously identified to be linked to markers CDO344 and CDO749 (group-5 short arm of wheat), respectively, in the genetic map of rice chromosome 12, map between FL 0.56 and 0.63 in the consensus map. Thus at least a part of the group-5 short arm is homoeologous to a region of chromosome 12 of rice. The genetic map of chromosome arm 5AS was constructed using a population of 139 BC1 plants derived from a cross between the euploid wheat ”Chris” carrying a dominant male-sterile gene Ms3 and a disomic substitution line in which chromosome 5A of T. aestivum cv Chinese Spring was substituted by chromosome 5A from Triticum turgidum ssp. dicoccoides. The map has a genetic length of 53.4 cM with 11 DNA markers. The initial map showed that the gene Ms3 cosegregated with three markers, WG341, BCD1130 and CDO677. High-resolution mapping using an additional 509 BC1 plants indicated that the marker WG341 was closely linked to Ms3 at a genetic distance of 0.8 cM. The Ms3 was mapped physically in the region spanning 40% of the arm length from the centromere of 5AS. Therefore, map-based cloning of the Ms3 is not feasible, although WG341 can be used as a useful tag for the Ms3 gene for breeding purposes. Received: 12 December 2000 / Accepted: 26 January 2001  相似文献   

20.
An improved genetic map of diploid (2n=2x=16) alfalfa has been developed by analyzing the inheritance of more than 800 genetic markers on the F2 population of 137 plant individuals. The F2 segregating population derived from a self-pollinated F1 hybrid individual of the cross Medicago sativa ssp. quasifalcata ×Medicago sativa ssp. coerulea. This mapping population was the same one which had been used for the construction of our previous alfalfa genetic map. The genetic analyses were performed by using maximum-likelihood equations and related computer programs. The improved genetic map of alfalfa in its present form contains 868 markers (four morphological, 12 isozyme, 26 seed protein, 216 RFLP, 608 RAPD and two specific PCR markers) in eight linkage groups. Of the markers 80 are known genes, including 2 previously cytologically localized genes, the rDNA and the β-tubulin loci. The genetic map covers 754 centimorgans (cM) with an average marker density of 0.8/cM. The correlation between the physical and genetic distances is about 1000–1300 kilobase pairs per centiMorgan. In this map, the linkage relationships of some markers on linkage groups 6, 7, and 8 are different from the previously published one. The cause of this discrepancy was that the genetic linkage of markers displaying distorted segregation (characterized by an overwhelming number of heterozygous individuals) had artificially linked genetic regions that turned out to be unlinked. To overcome the disadvantageous influence of the excess number of heterozygous genotypes on the recombination fractions, we used recently described maximum-likelihood formulas and colormapping, which allowed us to exclude the misleading linkages and to estimate the genetic distances more precisely. Received: 19 October 1998 / Accepted: 15 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号