首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The type II secretion system (T2SS) is used by several Gram-negative bacteria for the secretion of hydrolytic enzymes and virulence factors across the outer membrane. In these secretion systems, a complex of 12-15 so-called "Gsp proteins" spans from a regulatory ATPase in the cytoplasm, via several signal or energy transducing proteins in the inner membrane and the pseudopilins in the periplasm, to the actual pore in the outer membrane. The human pathogen Vibrio cholerae employs such an assembly, called the Eps system, for the export of its major virulence factor, cholera toxin, from its periplasm into the lumen of the gastro-intestinal tract of the host. Here, we report the atomic structure of the major cytoplasmic domain of the inner membrane-spanning EpsL protein from V. cholerae. EpsL is the binding partner of the regulatory ATPase EpsE as well as of EpsM and pseudopilins, and is therefore a critical link between the cytoplasmic and the periplasmic part of the Eps-system. The 2.7A resolution structure was determined by a combination of Se-Met multiple anomalous dispersion (MAD) and multiple isomorphous replacement with anomalous scattering (MIRAS) phasing methods. The 28kDa cytoplasmic domain of EpsL (cyto-EpsL) consists of three beta-sheet-rich domains. With domains I and III similar to the RNaseH-fold, cyto-EpsL unexpectedly shows structural homology with the superfamily of actin-like ATPases. cyto-EpsL, however, is an unusual member of this superfamily as it misses the canonical actin domains 1B and 2B, which are common yet variable in this superfamily. Moreover, cyto-EpsL has an additional domain II, which has the topology of an SHS2-fold module. Within the superfamily this fold module has been observed only for domain 1C of the cell division protein FtsA, in which it mediates protein-protein interactions. This domain II displays great flexibility and contributes to a pronounced negatively charged canyon on the surface of cyto-EpsL. Functional data as well as structural homology and sequence conservation suggest that domain II interacts with EpsE, the major cytoplasmic binding partner of EpsL.  相似文献   

2.
Gram-negative bacteria use type II secretion systems for the transport of virulence factors and hydrolytic enzymes through the outer membrane. These sophisticated multi-protein complexes reach from the pore in the outer membrane via the pseudopilins in the periplasm and a multi-protein inner-membrane sub-complex, to an ATPase in the cytoplasm. The human pathogen Vibrio cholerae uses such a secretion machinery, called the Eps-system, for the export of its major virulence factor cholera toxin into the intestinal tract of the human host. Here, we describe the 2.4 A structure of the hetero-tetrameric complex of the N-terminal domain of the ATPase EpsE and the cytoplasmic domain of the inner membrane protein EpsL, which constitute the major cytoplasmic components of the Eps-system. A stable fragment of EpsE in complex with the cytoplasmic domain of EpsL was identified via limited proteolysis and facilitated the crystallization of the complex. This first structure of a complex between two different proteins of the type II secretion system reveals that the N-terminal domain of EpsE and the cytoplasmic domain of EpsL form a hetero-tetramer, in which EpsL is the central dimer and EpsE binds on the periphery. The dimer of EpsL in this complex is very similar to the dimer seen in the crystal structure of the native cytoplasmic domain of EpsL, suggesting a possible physiological relevance despite a relatively small 675 A2 buried solvent accessible surface. The N-terminal domain of EpsE, which forms a compact domain with an alpha+beta-fold, places its helix alpha2 in a mostly hydrophobic cleft between domains II and III of EpsL burying 1700 A2 solvent accessible surface. This extensive interface involves several residues whose hydrophobic or charged nature is well conserved and is therefore likely to be of general importance in type II secretion systems.  相似文献   

3.
Vibrio cholerae secretes a number of proteins important for virulence, including cholera toxin. This process requires the products of the eps genes which have homologues in genera such as Aeromonas, Klebsiella and Pseudomonas and are thought to form a membrane-associated multiprotein complex. Here we show that the putative nucleotide-binding protein EpsE is associated with and stabilized by the cytoplasmic membrane via interaction with EpsL. Analysis of fusion proteins between EpsE and the homologous ExeE from Aeromonas hydrophila demonstrates that the N-terminus of EpsE contains the EpsL binding domain and determines species specificity. An intact Walker A box, commonly found in ATP-binding proteins, is required for activity of EpsE in vivo and for autophosphorylation of purified EpsE in vitro. These results indicate that both the kinase activity of EpsE as well as its ability to interact with the putative cytoplasmic membrane protein EpsL are required for translocation of toxin across the outer membrane in Vibrio cholerae.  相似文献   

4.
Extracellular secretion of proteins via the type II or general secretion pathway in gram-negative bacteria requires the assistance of at least 12 gene products that are thought to form a complex apparatus through which secreted proteins are translocated. Although this apparatus is specifically required only for the outer membrane translocation step during transport across the bacterial cell envelope, it is believed to span both membranes. The EpsE, EpsL, and EpsM proteins of the type II apparatus in Vibrio cholerae are thought to form a trimolecular complex that is required to either control the opening and closing of the secretion pore or to transduce energy to the site of outer membrane translocation. EpsL is likely to play an important role in this relay by interacting with both the cytoplasmic EpsE protein and the cytoplasmic membrane protein EpsM, which is predominantly exposed on the periplasmic side of the membrane. We have now extended this model and mapped the separate regions within EpsL that contain the EpsE and EpsM binding domains. By taking advantage of the species specificity of the type II pathway, we have used chimeric proteins composed of EpsL and its homologue, ExeL, from Aeromonas hydrophila together with either EpsE or its Aeromonas homologue, ExeE, to complement the secretion defect in both epsL and exeL mutant strains. These studies have mapped the species-specific EpsE binding site to the N-terminal cytoplasmic region between residues 57 and 216 of EpsL. In addition, the species-specific EpsM binding site was mapped to the C-terminal half of EpsL by coimmunoprecipitation of EpsM with different EpsL-ExeL chimeras. This site is present in the region between amino acids 216 and 296, which contains the predicted membrane-spanning segment of EpsL.  相似文献   

5.
The type II secretion system is a multi-protein complex that spans the cell envelope of Gram-negative bacteria and promotes the secretion of proteins, including several virulence factors. This system is homologous to the type IV pilus biogenesis machinery and contains five proteins, EpsG-K, termed the pseudopilins that are structurally homologous to the type IV pilins. The major pseudopilin EpsG has been proposed to form a pilus-like structure in an energy-dependent process that requires the ATPase, EpsE. A key remaining question is how the membrane-bound EpsG interacts with the cytoplasmic ATPase, and if this is a direct or indirect interaction. Previous studies have established an interaction between the bitopic inner membrane protein EpsL and EpsE; therefore, in this study we used in vivo cross-linking to test the hypothesis that EpsG interacts with EpsL. Our findings suggest that EpsL may function as a scaffold to link EpsG and EpsE and thereby transduce the energy generated by ATP hydrolysis to support secretion. The recent discovery of structural homology between EpsL and a protein in the type IV pilus system implies that this interaction may be conserved and represent an important functional interaction for both the type II secretion and type IV pilus systems.  相似文献   

6.
The general secretion pathway of gram-negative bacteria is responsible for extracellular secretion of a number of different proteins, including proteases and toxins. This pathway supports secretion of proteins across the cell envelope in two distinct steps, in which the second step, involving translocation through the outer membrane, is assisted by at least 13 different gene products. Two of these components, the cytoplasmic membrane proteins EpsL and EpsM of Vibrio cholerae, have been purified and characterized. Based on gel filtration analysis, both purified EpsM(His)6 and wild-type EpsL present in an Escherichia coli Triton X-100 extract are dimeric proteins. EpsL and EpsM were also found to interact directly and form a Triton X-100 stable complex that could be precipitated with either anti-EpsL or anti-EpsM antibodies. In addition, when the L and M proteins were coexpressed in E. coli, they formed a stable complex and protected each other from proteolytic degradation, indicating that these two proteins interact in vivo and that no other Eps protein is required for their association. Since EpsL is predicted to contain a large cytoplasmic domain, while EpsM is predominantly exposed on the periplasmic side, we speculate that these components might be part of a structure that is involved in bridging the inner and outer membranes. Furthermore, since EpsL has previously been shown to interact with the autophosphorylating cytoplasmic membrane protein EpsE, we hypothesize that this trimolecular complex might be involved in regulating the opening and closing of the secretion pore and/or transducing energy to the site of outer membrane translocation.  相似文献   

7.
EpsE is an ATPase that powers transport of cholera toxin and hydrolytic enzymes through the Type II secretion (T2S) apparatus in the gram-negative bacterium, Vibrio cholerae. On the basis of structures of homologous Type II/IV secretion ATPases and our biochemical data, we believe that EpsE is active as an oligomer, likely a hexamer, and the binding, hydrolysis, and release of nucleotide cause EpsE to undergo dynamic structural changes, thus converting chemical energy to mechanical work, ultimately resulting in extracellular secretion. The conformational changes that occur as a consequence of nucleotide binding would realign conserved arginines (Arg(210), Arg(225), Arg(320), Arg(324), Arg(336), and Arg(369)) from adjoining domains and subunits to complete the active site around the bound nucleotide. Our data suggest that these arginines are essential for ATP hydrolysis, although their roles in shaping the active site of EpsE are varied. Specifically, we have shown that replacements of these arginine residues abrogate the T2S process due to a reduction of ATPase activity yet do not have any measurable effect on nucleotide binding or oligomerization of EpsE. We have further demonstrated that point mutations in the EpsE intersubunit interface also reduce ATPase activity without disrupting oligomerization, strengthening the idea that residues from multiple subunits must precisely interact in order for EpsE to be sufficiently active to support T2S. Our findings suggest that the action of EpsE is similar to that of other Type II/IV secretion ATPase family members, and thus these results may be widely applicable to the family as a whole.  相似文献   

8.
The specialised ATPase FliI is central to export of flagellar axial protein subunits during flagellum assembly. We establish the normal cellular location of FliI and its regulatory accessory protein FliH in motile Salmonella typhimurium, and ascertain the regions involved in FliH(2)/FliI heterotrimerisation. Both FliI and FliH localised to the cytoplasmic membrane in the presence and in the absence of proteins making up the flagellar export machinery and basal body. Membrane association was tight, and FliI and FliH interacted with Escherichia coli phospholipids in vitro, both separately and as the preformed FliH(2)/FliI complex, in the presence or in the absence of ATP. Yeast two-hybrid analysis and pull-down assays revealed that the C-terminal half of FliH (H105-235) directs FliH homodimerisation, and interacts with the N-terminal region of FliI (I1-155), which in turn has an intra-molecular interaction with the remainder of the protein (I156-456) containing the ATPase domain. The FliH105-235 interaction with FliI was sufficient to exert the FliH-mediated down-regulation of ATPase activity. The basal ATPase activity of isolated FliI was stimulated tenfold by bacterial (acidic) phospholipids, such that activity was 100-fold higher than when bound by FliH in the absence of phospholipids. The results indicate similarities between FliI and the well-characterised SecA ATPase that energises general protein secretion. They suggest that FliI and FliH are intrinsically targeted to the inner membrane before contacting the flagellar secretion machinery, with both FliH105-235 and membrane phospholipids interacting with FliI to couple ATP hydrolysis to flagellum assembly.  相似文献   

9.
The type II secretion system is a macromolecular assembly that facilitates the extracellular translocation of folded proteins in gram-negative bacteria. EpsE, a member of this secretion system in Vibrio cholerae, contains a nucleotide-binding motif composed of Walker A and B boxes that are thought to participate in binding and hydrolysis of ATP and displays structural homology to other transport ATPases. Here we demonstrate that purified EpsE is an Mg2+-dependent ATPase and define optimal conditions for the hydrolysis reaction. EpsE displays concentration-dependent activity, which may suggest that the active form is oligomeric. Size exclusion chromatography showed that the majority of purified EpsE is monomeric; however, detailed analyses of specific activities obtained following gel filtration revealed the presence of a small population of active oligomers. We further report that EpsE binds zinc through a tetracysteine motif near its carboxyl terminus, yet metal displacement assays suggest that zinc is not required for catalysis. Previous studies describing interactions between EpsE and other components of the type II secretion pathway together with these data further support the hypothesis that EpsE functions to couple energy to the type II apparatus, thus enabling secretion.  相似文献   

10.
Type IV pili (T4Ps) are long cell surface filaments, essential for microcolony formation, tissue adherence, motility, transformation, and virulence by human pathogens. The enteropathogenic Escherichia coli bundle-forming pilus is a prototypic T4P assembled and powered by BfpD, a conserved GspE secretion superfamily ATPase held by inner-membrane proteins BfpC and BfpE, a GspF-family membrane protein. Although the T4P assembly machinery shares similarity with type II secretion (T2S) systems, the structural biochemistry of the T4P machine has been obscure. Here, we report the crystal structure of the two-domain BfpC cytoplasmic region (N-BfpC), responsible for binding to ATPase BfpD and membrane protein BfpE. The N-BfpC structure reveals a prominent central cleft between two α/β-domains. Despite negligible sequence similarity, N-BfpC resembles PilM, a cytoplasmic T4P biogenesis protein. Yet surprisingly, N-BfpC has far greater structural similarity to T2S component EpsL, with which it also shares virtually no sequence identity. The C-terminus of the cytoplasmic domain, which leads to the transmembrane segment not present in the crystal structure, exits N-BfpC at a positively charged surface that most likely interacts with the inner membrane, positioning its central cleft for interactions with other Bfp components. Point mutations in surface-exposed N-BfpC residues predicted to be critical for interactions among BfpC, BfpE, and BfpD disrupt pilus biogenesis without precluding interactions with BfpE and BfpD and without affecting BfpD ATPase activity. These results illuminate the relationships between T4P biogenesis and T2S systems, imply that subtle changes in component residue interactions can have profound effects on function and pathogenesis, and suggest that T4P systems may be disrupted by inhibitors that do not preclude component assembly.  相似文献   

11.
Secretion of fully folded extracellular proteins across the outer membrane of Gram-negative bacteria is mainly assisted by the ATP-dependent type II secretion system (T2SS). Depending on species, 12-15 proteins are usually required for the function of T2SS by forming a trans-envelope multiprotein secretion complex. Here we report crystal structures of an essential component of the Xanthomonas campestris T2SS, the 21-kDa N-terminal domain of cytosolic secretion ATPase XpsE (XpsEN), in two conformational states. By mediating interaction between XpsE and the cytoplasmic membrane protein XpsL, XpsEN anchors XpsE to the membrane-associated secretion complex to allow the coupling between ATP utilization and exoprotein secretion. The structure of XpsEN observed in crystal form P4(3)2(1)2 is composed of a 90-residue alpha/beta sandwich core domain capped by a 62-residue N-terminal helical region. The core domain exhibits structural similarity with the NifU-like domain, suggesting that XpsE(N) may be involved in the regulation of XpsE ATPase activity. Surprisingly, although a similar core domain structure was observed in crystal form I4(1)22, the N-terminal 36 residues of the helical region undergo a large structural rearrangement. Deletion analysis indicates that these residues are required for exoprotein secretion by mediating the XpsE/XpsL interaction. Site-directed mutagenesis study further suggests the more compact conformation observed in the P4(3)2(1)2 crystal likely represents the XpsL binding-competent state. Based on these findings, we speculate that XpsE might function in T2SS by cycling between two conformational states. As a closely related protein to XpsE, secretion ATPase PilB may function similarly in the type IV pilus assembly.  相似文献   

12.
The type II secretion (T2S) system is present in many gram-negative species, both pathogenic and nonpathogenic, where it supports the delivery of a variety of toxins, proteases, and lipases into the extracellular environment. In Vibrio cholerae, the T2S apparatus is composed of 12 Eps proteins that assemble into a multiprotein complex that spans the entire cell envelope. Two of these proteins, EpsM and EpsL, are key components of the secretion machinery present in the inner membrane. In addition to likely forming homodimers, EpsL and EpsM have been shown to form a stable complex in the inner membrane and to protect each other from proteolytic degradation. To identify and map the specific regions of EpsM involved in protein-protein interactions with both another molecule of EpsM and EpsL, we tested the interactions of deletion constructs of EpsM with full-length EpsM and EpsL by functional characterization and copurification as well as coimmunoprecipitation. Analysis of the truncated EpsM mutants revealed that the region of EpsM from amino acids 100 to 135 is necessary for EpsM to form homo-oligomers, while residues 84 to 99 appear to be critical for a stable interaction with EpsL.  相似文献   

13.
The secretion of alkaline phosphatase (PhoA) and peculiarities of biogenesis of the cell envelope were studied in Escherichia coli strains HD30/pHD 102 and HDL11 with controlled synthesis of anionic phospholipids, phosphatidylglycerol, and cardiolipin. Inactivation of the pgsA gene encoding the synthesis of anionic phospholipids or changes in the regulation of its expression by an environmental factor caused changes in the metabolism and composition of membrane phospholipids, which resulted in a decrease in the secretion of alkaline phosphatase through the cytoplasmic membrane and an increase in PhoA secretion from the periplasm into the culture medium. A conforming increase was observed in exopolysaccharide secretion, as well as a decrease in the contents of lipopolysaccharide and lipopolyprotein of the outer membrane that determine the membrane barrier properties. The results obtained testify that anionic phospholipids play a significant role in protein secretion and are probably involved in the interrelation between the protein secretion and biogenesis of cell envelope components.  相似文献   

14.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

15.
The toxin-coregulated pilus (TCP) is one of the major virulence factors of Vibrio cholerae. Biogenesis of this type 4 pilus (Tfp) requires a number of structural components encoded by the tcp operon. TcpT, the cognate putative ATPase, is required for TCP biogenesis and all TCP-mediated functions. We studied the stability and localization of TcpT in cells containing in-frame deletions in each of the tcp genes. TcpT was detectable in each of the biogenesis mutants except the DeltatcpT strain. TcpT was localized to the inner membrane (IM) in a TcpR-dependent manner. TcpR is a predicted bitopic inner membrane protein of the TCP biogenesis apparatus. Using metal affinity pull-down experiments, we demonstrated interaction between TcpT and TcpR. Using Escherichia coli as a heterologous system, we investigated direct interaction between TcpR and TcpT. We report that TcpR is sufficient for TcpT IM localization per se; however, stable IM localization of TcpT requires an additional V. cholerae-specific factor(s). A LexA-based two-hybrid system was utilized to define interaction domains of the two proteins. We demonstrate a strong interaction between the cytoplasmic domain of TcpR and the N-terminal 100 amino acid residues of TcpT. We also demonstrated the ability of the C-terminal domain of TcpT to multimerize.  相似文献   

16.
The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, has been shown to be affected by bile. The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long-chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids - marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria.  相似文献   

17.
We investigated the interaction of human P450 1B1 (CYP1B1) with various phospholipid bilayers using the N-terminally deleted (Δ2-4)CYP1B1 and (Δ2-26)CYP1B1 enzymes. Among anionic phospholipids, phosphatidic acid (PA) and cardiolipin specifically increased the catalytic activities, membrane binding affinities, and thermal stabilities of both CYP1B1 proteins when phosphatidylcholine matrix was gradually replaced with these anionic phospholipids. PA- or cardiolipin-dependent changes of CYP1B1 conformation were revealed by altered Trp fluorescence and CD spectra. However, both PA and cardiolipin exerted more significant effects with the (Δ2-4)CYP1B1 than the (Δ2-26)CYP1B1 implying the functional importance of N-terminal region for the interaction with the phospholipid membranes. In contrast, other anionic phospholipids such as phosphatidylserine and the neutral phospholipid phosphatidylethanolamine had no apparent effects on the catalytic activity or conformation of CYP1B1. These data suggest that the chemical and physical properties of membranes influenced by PA or cardiolipin composition are critical for the functional roles of CYP1B1.  相似文献   

18.
FliH is a soluble component of the flagellar export apparatus that binds to the ATPase FliI, and negatively regulates its activity. The 235-amino-acid FliH dimerizes and interacts with FliI to form a hetero-trimeric (FliH)2FliI complex. In the present work, the importance of different regions of FliH was examined. A set of 24 scanning deletions of 10 amino acids was constructed over the entire FliH sequence, along with several combined deletions of 40 amino acids and truncations of both N- and C-termini. The mutant proteins were examined with respect to (i) complementation; (ii) dominance and multicopy effects; (iii) interaction with wild-type FliH; (iv) interaction with FliI; (v) inhibition of the ATPase activity of FliI; and (vi) interaction with the putative general chaperone FliJ. Analysis of the deletion mutants revealed a clear functional demarcation between the FliH N- and C-terminal regions. The 10-amino-acid deletions throughout most of the N-terminal half of the sequence complemented and were not dominant, whereas those throughout most of the C-terminal half did not complement and were dominant. FliI binding was disrupted by C-terminal deletions from residue 101 onwards, indicating that the C-terminal domain of FliH is essential for interaction with FliI. FliH dimerization was abolished by deletion of residues 101-140 in the centre of the sequence, as were complementation, dominance and interaction with FliI and FliJ. The importance of this region was confirmed by the fact that fragment FliHC2 (residues 99-235) interacted with FliH and FliI, whereas fragment FliHC1 (residues 119-235) did not. FliHC2 formed a relatively unstable complex with FliI and showed biphasic regulation of ATPase activity, suggesting that the FliH N-terminus stabilizes the (FliH)2FliI complex. Several of the N-terminal deletions tested permitted close to normal ATPase activity of FliI. Deletion of the last five residues of FliH caused a fivefold activation of ATPase activity, suggesting that this region of FliH governs a switch between repression and activation of FliI. Deletion of the first 10 residues of FliH abolished complementation, severely reduced its interaction with FliJ and uncoupled its role as a FliI repressor from its other export functions. Based on these data, a model is presented for the domain construction and function of FliH in complex with FliI and FliJ.  相似文献   

19.
The short circuit current and the open circuit voltage responses of membranes to ATP, which have been attributed to membrane ATPase acting as a sodium pump, have been reproduced not only in a lipid membrane containing solubilized ATPase but also in membranes formed of the phospholipids contained in ATPase. The response is greatest with cardiolipin, but occurs with other acidic phospholipids. This observation of electrogenesis without hydrolysis is a surface phenomenon probably due to the alignment of ATP on the phospholipid by ion association at its interface with the water phase. The finding constitutes a precaution for interpreting studies of membrane Na-K-ATPase or for its incorporation into an artificial membrane. The substances necessary for electrogenesis are present at the mitochondrial membrane, and the particular orientation of the ATP on the phospholipids in vitro suggests a role for this ion association in the function of Na-K-ATPase.  相似文献   

20.
Summary The short circuit current and the open circuit voltage responses of membranes to ATP, which have been attributed to membrane ATPase acting as a sodium pump, have been reproduced not only in a lipid membrane containing solubilized ATPase but also in membranes formed of the phospholipids contained in ATPase. The response is greatest with cardiolipin, but occurs with other acidic phospholipids. This observation of electrogenesis without hydrolysis is a surface phenomenon probably due to the alignment of ATP on the phospholipid by ion association at its interface with the water phase. The finding constitutes a precaution for interpreting studies of membrane Na–K-ATPase or for its incorporation into an artificial membrane. The substances necessary for electrogenesis are present at the mitochondrial membrane, and the particular orientation of the ATP on the phospholipids in vitro suggests a role for this ion association in the function of Na–K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号