首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, developments in time-resolved spin-label electron spin resonance (ESR) spectroscopy have contributed considerably to the study of biomembranes. Two different applications of electron spin echo spectroscopy of spin-labelled phospholipids are reviewed here: (1) the use of partially relaxed echo-detected ESR spectra to study the librational lipid-chain motions in the low-temperature phases of phospholipid bilayers; (2) the use of electron spin echo envelope modulation spectroscopy to determine the penetration of water into phospholipid membranes. Results are described for phosphatidylcholine bilayer membranes, with and without equimolar cholesterol, that are obtained with phosphatidylcholine spin probes site-specifically labelled throughout the sn-2 chain.  相似文献   

2.
The molecular dynamics of binary dispersions of plasmenylcholine/cholesterol and phosphatidylcholine/cholesterol were quantified by electron spin resonance (ESR) and deuterium magnetic resonance (2H NMR) spectroscopy. The order parameter of both 5-doxylstearate (5DS) and 16-doxylstearate (16DS) was larger in vesicles comprised of plasmenylcholine in comparison to phosphatidylcholine at all temperatures studied (e.g., S = 0.592 vs. 0.487 for 5DS and 0.107 vs. 0.099 for 16DS, respectively, at 38 degrees C). Similarly, the order parameter of plasmenylcholine vesicles was larger than that of phosphatidylcholine vesicles utilizing either spin-labeled phosphatidylcholine or spin-labeled plasmenylcholine as probes of molecular motion. The ratio of the low-field to the midfield peak height in ESR spectra of 16-doxylstearate containing moieties (i.e., spin-labeled plasmenylcholine and phosphatidylcholine) was lower in plasmenylcholine vesicles (0.93 +/- 0.01) in comparison to phosphatidylcholine vesicles (1.03 +/- 0.01). 2H NMR spectroscopy demonstrated that the order parameter of plasmenylcholine was greater than that of phosphatidylcholine for one of the two diastereotopic deuterons located at the C-2 carbon of the sn-2 fatty acyl chain. The spin-lattice relaxation times for deuterated plasmenylcholine and phosphatidylcholine in binary mixtures containing 0-50 mol % cholesterol varied nonmonotonically as a function of cholesterol concentration and were different for each phospholipid subclass. Taken together, the results indicate that the vinyl ether linkage in the proximal portion of the sn-1 aliphatic chain of plasmenylcholine has substantial effects on the molecular dynamics of membrane bilayers both locally and at sites spatially distant from the covalent alteration.  相似文献   

3.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

4.
The affinity of ionized fatty acids for the Na,K-ATPase is used to determine the transmembrane profile of water penetration at the protein-lipid interface. The standardized intensity of the electron spin echo envelope modulation (ESEEM) from 2H-hyperfine interaction with D2O is determined for stearic acid, n-SASL, spin-labeled systematically at the C-n atoms throughout the chain. In both native Na,K-ATPase membranes from shark salt gland and bilayers of the extracted membrane lipids, the D2O-ESEEM intensities of fully charged n-SASL decrease progressively with position down the fatty acid chain toward the terminal methyl group. Whereas the D2O intensities decrease sharply at the n = 9 position in the lipid bilayers, a much broader transition region in the range n = 6 to 10 is found with Na,K-ATPase membranes. Correction for the bilayer population in the membranes yields the intrinsic D2O-intensity profile at the protein-lipid interface. For positions at either end of the chains, the D2O concentrations at the protein interface are greater than in the lipid bilayer, and the positional profile is much broader. This reveals the higher polarity, and consequently higher intramembrane water concentration, at the protein-lipid interface. In particular, there is a significant water concentration adjacent to the protein at the membrane midplane, unlike the situation in the bilayer regions of this cholesterol-rich membrane. Experiments with protonated fatty acid and phosphatidylcholine spin labels, both of which have a considerably lower affinity for the Na,K-ATPase, confirm these results.  相似文献   

5.
The relation between the immune-reaction of phosphatidylcholine liposomes containing spin-labeled galactosyl ceramide with or without cholesterol and the topographical distribution of the glycolipid in membranes was studied. In egg yolk phosphatidylcholine liposomes, both immune agglutination and antibody binding occurred, irrespectively of the presence of cholesterol, though the motion of the fatty acyl chain of spin-labeled galactosyl ceramide was restricted by cholesterol. In dipalmitoyl phosphatidylcholine liposomes, unlike in egg yolk phosphatidylcholine liposomes, the immune-reaction depended on the cholesterol content. The electron spin resonance (ESR) spectra of spin-labeled galactosyl ceramide in dipalmitoyl phosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled galactosyl ceramide in the liposomes. Without cholesterol, most of the spin-labeled galactosyl ceramide was clustered on the dipalmitoyl phosphatidylcholine membrane, but with increase of cholesterol, random distribution of hapten on the membrane increased. The cholesterol-dependent change in the topographical distribution of hapten on the membranes was parallel with that of immune reactivity. 'Aggregates' composed solely of galactosyl ceramide did not show any binding activity with antibody. The findings suggest that the recognition of galactosyl ceramide by antibody depended on the topographical distribution of hapten molecules. Phosphatidylcholine and/or cholesterol may play roles as 'spacers' for the proper distribution of 'active' haptens on the membranes. The optimum density of haptens properly distributed on liposomal membranes is discussed.  相似文献   

6.
Profiles of polarity across biological membranes are essential determinants of the cellular permeability barrier and of the stability of transmembrane proteins. High-field electron paramagnetic resonance of systematically spin-labeled lipid chains is used here to determine the polarity profiles of cholesterol-containing phospholipid membranes. The polarity dependence of the g(xx)-tensor element is opposite to the dependence on chain dynamics, and additionally has enhanced sensitivity to hydrogen bonding. Both features make high-field measurements superior to conventional determinations of local polarity from spin-label hyperfine couplings. The profile of g(xx) in dimyristoyl phosphatidylcholine membranes with 5 or 40 mol% cholesterol is established with eleven positional isomers of phosphatidylcholine, spin labeled at positions n = 4-14 in the sn-2 chain. A sigmoidal barrier, centered about chain position n(o) approximately 8, mirrors the corresponding sigmoidal trough obtained from the spin-label hyperfine coupling, A(zz). For the different positions, n, it is found that partial differential g(xx)/ partial differential A(zz) = -2.4 T(-1), a high value that is characteristic of hydrogen-bonded spin labels. This demonstrates that the transmembrane polarity profile registered by spin labels corresponds to water penetration into the membrane. Inhomogeneous broadening of the g(xx)-spectral feature demonstrates heterogeneities of the water distribution in the regions of higher intramembrane polarity defined by n < 8. In the transition region between high- and low-polarity regions (n approximately 8), the g(xx)-feature consists of two components characteristic of coexisting hydrated and nonhydrated states.  相似文献   

7.
The temperature and hydration dependences of lipid lateral diffusion in model membrane/D2O multilayers of dipalmitoyl (DPL), dilauryl (DLL) and egg yolk (EYPC) lecithins were measured using pulsed gradient proton nuclear magnetic resonance (NMR) spin echo techniques. Oriented samples were used to minimize anisotropic dipolar interactions and permit formation of a spin echo. Significantly lipid lateral diffusion is hydration dependent over the range studied (15–40% D2O w/w), varying in DPL over this range for example by a factor of 2. For the saturated lipids at the same hydration and temperature, diffusion decreases monotonically as the chain length increases. The results tend to be larger, by factors of 2–5, than the earlier electron spin resonance (ESR) spin label results, the differences being attributable in part to the differences in hydration and to the absence of probe effects in this work. The addition of cholesterol (28.6 mol%) decreases diffusion of the lipids. Comparisons with other methods of lateral diffusion measurements are made.  相似文献   

8.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

9.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

10.
Permeation of oxygen into membranes is relevant not only to physiological function, but also to depth determinations in membranes by site-directed spin labeling. Spin-lattice (T(1)) relaxation enhancements by air or molecular oxygen were determined for phosphatidylcholines spin labeled at positions (n = 4-14, 16) of the sn-2 chain in fluid membranes of dimyristoyl phosphatidylcholine, by using nonlinear continuous-wave electron paramagnetic resonance (EPR). Both progressive saturation and out-of-phase continuous-wave EPR measurements yield similar oxygen permeation profiles. With pure oxygen, the T(2)-relaxation enhancements determined from homogeneous linewidths of the linear EPR spectra are equal to the T(1)-relaxation enhancements determined by nonlinear EPR. This confirms that both relaxation enhancements occur by Heisenberg exchange, which requires direct contact between oxygen and spin label. Oxygen concentrates in the hydrophobic interior of phospholipid bilayer membranes with a sigmoidal permeation profile that is the inverse of the polarity profile established earlier for these spin-labeled lipids. The shape of the oxygen permeation profile in fluid lipid membranes is controlled partly by the penetration of water, via the transmembrane polarity profile. At the protein interface of the KcsA ion channel, the oxygen profile is more diffuse than that in fluid lipid bilayers.  相似文献   

11.
The relation between the in vitro immunogenicity of phosphatidylcholine liposomes containing 2,4-dinitrophenyl-6-N-aminocaproylphosphatidylethanolamine (DNP-Cap-PE) as a hapten and the topographical distribution of the haptens on lipid membranes was studied. In distearoylphosphatidylcholine liposomes, the immunogenicity increased with increase of cholesterol content in the liposomal membranes. The electron spin resonance spectra of spin-labeled DNP-Cap-PE in distearoylphosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled DNP-Cap-PE on the membranes. In the absence of cholesterol, a considerable amount of haptens was clustered on the distearoylphosphatidylcholine membranes, but with increase of cholesterol, random distribution of the haptens on the membranes increased. The cholesterol-dependent change in the topographical distribution of the haptens on the membranes paralleled the change of immunogenicity, i.e., the immunogenicity was low when haptens were clustered on the liposomal membranes. Haptens arranged at a proper distance on the membranes may be required for optimum immune response.  相似文献   

12.
Electron spin resonance (ESR) studies have been performed on N-myristoyl dimyristoylphosphatidylethanolamine (N-14-DMPE) membranes using both phosphatidylcholines spin-labeled at different positions in the sn-2 acyl chain and N-acyl phosphatidylethanolamines spin-labeled in the N-acyl chain to characterize the location and mobility of the N-acyl chain in the lipid membranes. Comparison of the positional dependences of the spectral data for the two series of spin-labeled lipids suggests that the N-acyl chain is positioned at approximately the same level as the sn-2 chain of the phosphatidylcholine spin-label. Further, similar conclusions are reached when the ESR spectra of the N-acyl PE spin-labels in dimyristoylphosphatidylcholine (DMPC) or dimyristoylphosphatidylethanolamine (DMPE) host matrixes are compared with those of phosphatidylcholine spin-labels in these two lipids. Finally, the chain ordering effect of cholesterol has also been found to be similar for the N-acyl PE spin-label and PC spin-labels, when the host matrix is either DMPC and cholesterol or N-14-DMPE and cholesterol at a 6:4 mole ratio. In both cases, the gel-to-liquid crystalline phase transition is completely abolished but cholesterol perturbs the gel-phase mobility of N-14-DMPE more readily than that of DMPC. These results demonstrate that the long N-acyl chains are anchored firmly in the hydrophobic interior of the membrane, in an orientation that is parallel to that of the O-acyl chains, and are located at nearly the same vertical position as that of the sn-2 acyl chains in the lipid bilayer. There is a high degree of dynamic compatibility between the N-acyl chains and the O-acyl chains of the lipid bilayer core, although bilayers of N-acyl phosphatidylethanolamines possess a more hydrophobic interior than phosphatidylcholine bilayers. These results provide a structural basis for rationalizing the biological properties of NAPEs.  相似文献   

13.
Transfer of phospholipid from the envelope of hemagglutinating virus of Japan (HVJ) to erythrocyte (RBC) membrane and the virus-induced transfer of phospholipid between RBC membranes were studied using spin-labeled phosphatidylcholine (PC). The transfer of PC from membranes labeled densely with PC to unlabeled membranes was followed by the peak height increase in the electron spin resonance spectrum. The two kinds of transfer reactions took place very rapidly as reported previously. To obtain further details, the transfer reactions were studied with HVJ, HVJ inactivated by trypsin, HVJ harvested early, HVJ grown in fibroblast cells, the fibroblast HVJ activated by trypsin, influenza virus, and glutaraldehyde-treated RBCs. The results demonstrated that the viral F glycoprotein played a crucial role in the transmembrane phospholipid movements as well as in the fusion and hemolysis of RBCs. The transfer from HVJ to RBC's occurred partially through an exchange mechanism not accompanying the envelope fusion. This was shown by a decrease in the exchange broadening of the electron spin resonance spectrum of released spin-labeled HVJ (HVJ) and also by an increase in the ratio of PC to viral proteins incorporated into RBC membranes. HVJ modified RBC membrane so as to be able to exchange its phospholipids with those of inactive membranes such as fibroblast HVJ, influenza virus, glutaraldehyde-treated RBC'S, and phosphatidylcholine vesicles. HVJ affected the fluidity of RBC membranes markedly, the environments around PC being much fluidized. The virus-induced fusion was discussed based on close apposition of the membranes by HANA proteins and on the destabilization and fluidization of RBC membranes by F glycoproteins.  相似文献   

14.
Veiga MP  Goñi FM  Alonso A  Marsh D 《Biochemistry》2000,39(32):9876-9883
The temperature dependences of the ESR spectra from different positional isomers of sphingomyelin and of phosphatidylcholine spin-labeled in their acyl chain have been compared in mixed membranes composed of sphingolipids and glycerolipids. The purpose of the study was to identify the possible formation of sphingolipid-rich in-plane membrane domains. The principal mixtures that were studied contained sphingomyelin and the corresponding glycerolipid phosphatidylcholine, both from egg yolk. Other sphingolipids that were investigated were brain cerebrosides and brain gangliosides, in addition to sphingomyelins from brain and milk. The outer hyperfine splittings in the ESR spectra of sphingomyelin and of phosphatidylcholine spin-labeled on C-5 of the acyl chain were consistent with mixing of the sphingolipid and glycerolipid components, in fluid-phase membranes. In the gel phase of egg sphingomyelin and its mixtures with phosphatidylcholine, the outer hyperfine splittings of sphingomyelin spin-labeled at C-14 of the acyl chain of sphingomyelin are smaller than those of the corresponding sn-2 chain spin-labeled phosphatidylcholine. This is in contrast to the situation with sphingomyelin and phosphatidylcholine spin-labeled at C-5, for which the outer hyperfine splitting is always greater for the spin-labeled sphingomyelin. The behavior of the C-14 spin-labels is attributed to a different geometry of the acyl chain attachments of the sphingolipids and glycerolipids that is consistent with their respective crystal structures. The two-component ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled at C-14 of the acyl chain directly demonstrate a broad two-phase region with coexisting gel and fluid domains in sphingolipid mixtures with phosphatidylcholine. Domain formation in membranes composed of sphingolipids and glycerolipids alone is related primarily to the higher chain-melting transition temperature of the sphingolipid component.  相似文献   

15.
The ESR spectra from different positional isomers of sphingomyelin and phosphatidylcholine spin-labeled in their acyl chain have been studied in sphingomyelin(cerebroside)-phosphatidylcholine mixed membranes that contain cholesterol. The aim was to investigate mechanisms by which cholesterol could stabilize possible domain formation in sphingolipid-glycerolipid membranes. The outer hyperfine splittings in the ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled on the 5 C atom of the acyl chain were consistent with mixing of the components, but the perturbations on adding cholesterol were greater in the membranes containing sphingomyelin than in those containing phosphatidylcholine. Infrared spectra of the amide I band of egg sphingomyelin were shifted and broadened in the presence of cholesterol to a greater extent than the carbonyl band of phosphatidylcholine, which was affected very little by cholesterol. Two-component ESR spectra were observed from lipids spin-labeled on the 14 C atom of the acyl chain in cholesterol-containing membranes composed of sphingolipids, with or without glycerolipids (sphingomyelin/cerebroside and sphingomyelin/cerebroside/phosphatidylcholine mixtures). These results indicate the existence of gel-phase domains in otherwise liquid-ordered membranes that contain cholesterol. In the gel phase of egg sphingomyelin, the outer hyperfine splittings of sphingomyelin spin-labeled on the 14-C atom of the acyl chain are smaller than those for the corresponding spin-labeled phosphatidylcholine. In the presence of cholesterol, this situation is reversed; the outer splitting of 14-C spin-labeled sphingomyelin is then greater than that of 14-C spin-labeled phosphatidylcholine. This result provides some support for the suggestion that transbilayer interdigitation induced by cholesterol stabilizes the coexistence of gel-phase and "liquid-ordered" domains in membranes containing sphingolipids.  相似文献   

16.
Human serum albumin (HSA) is an abundant plasma protein that transports fatty acids and also binds a wide variety of hydrophobic pharmacores. Echo-detected (ED) EPR spectra and D2O-electron spin echo envelope modulation (ESEEM) Fourier-transform spectra of spin-labelled free fatty acids and phospholipids were used jointly to investigate the binding of stearic acid to HSA and the adsorption of the protein on dipalmitoyl phosphatidylcholine (DPPC) membranes. In membranes, torsional librations are detected in the ED-spectra, the intensity of which depends on chain position at low temperature. Water penetration into the membrane is seen in the D2O-ESEEM spectra, the intensity of which decreases greatly at the middle of the membrane. Both the chain librational motion and the water penetration are only little affected by adsorption of serum albumin at the DPPC membrane surface. In contrast, both the librational motion and the accessibility of the chains to water are very different in the hydrophobic fatty acid binding sites of HSA from those in membranes. Indeed, the librational motion of bound fatty acids is suppressed at low temperature, and is similar for the different chain positions, at all temperatures. Correspondingly, all segments of the bound chains are accessible to water, to rather similar extents.  相似文献   

17.
Dynamic properties of phosphatidylcholine-cholesterol membranes in the fluid phase and water accessibility to the membranes have been studied as a function of phospholipid alkyl chain length, saturation, mole fraction of cholesterol, and temperature by using spin and fluorescence labelling methods. The results are the following: (1) The effect of cholesterol on motional freedom of 5-doxyl stearic acid spin label (5-SASL) and 16-doxyl stearic acid spin label (16-SASL) in saturated phosphatidylcholine membrane is significantly larger than the effects of alkyl chain length and introduction of unsaturation in the alkyl chain. (2) Variation of alkyl chain length of saturated phospholipids does not alter the effects of cholesterol except in the case of dilauroylphosphatidylcholine, which possesses the shortest alkyl chains (12 carbons) used in this work. (3) Unsaturation of the alkyl chains greatly reduces the ordering effect of cholesterol at C-5 and C-16 positions although unsaturation alone gives only minor fluidizing effects. (4) Introduction of 30 mol% cholesterol to dimyristoylphosphatidylcholine membranes decreases the lateral diffusion constants of lipids by a factor of four, while it causes only a slight decrease of lateral diffusion in dioleoylphosphatidylcholine membranes. (5) If compared at the same temperature, 5-SASL mobilities plotted as a function of mole fraction of cholesterol in the fluid phases of dimyristoylphosphatidylcholine-, dipalmitoylphosphatidylcholine- and distearoylphosphatidylcholine-cholesterol membranes are similar in wide ranges of temperature (45-82 degrees C) and cholesterol mole fraction (0-50%). (6) In isothermal experiments with saturated phosphatidylcholine membranes, 5-SASL is maximally immobilized at the phase boundary between Regions I and III reported by other workers (Recktenwald, D.J. and McConnell, H.M. (1981) Biochemistry 20, 4505-4510) and becomes more mobile away from the boundary in Regions I and III. (7) 5-SASL in unsaturated phosphatidylcholine membranes showed a gradual monotonic immobilization with increase of cholesterol mole fraction without showing any maximum in the range of cholesterol fractions studied. (8) By rigorously determining rigid-limit magnetic parameters of cholestane spin labels in membranes from Q-band second-derivative ESR spectra to monitor the dielectric environment around the nitroxide radical, it is concluded that cholesterol incorporation increases water accessibility in the hydrophilic loci of the membrane. In contrast, 12-(9-anthroyloxy)stearic acid fluorescence showed that water accessibility is decreased in the hydrophobic loci of the membrane.  相似文献   

18.
The effects of Ca2+ on phosphatidic acid-phosphatidylcholine membranes have been studied using phospholipid spin labels. ESR spectra of spin-labeled phosphatidic acid-phosphatidylcholine membranes and phosphatidic acid-spin-labeled phosphatidylcholine membranes are exchange-broadened immediately upon addition of CaCl2. These changes directly and conclusively indicate Ca2+-induced clustering of spin-labeled phosphatidylcholine and aggregation of spin-labeled phosphatidic acid bridged by Ca2+-chelation in the binary phopholipid membranes. In the Ca2+-chelated aggregates, the motions of the alkyl chains of phosphatidic acid are greatly reduced and the lipid molecules are more closely packed. The clusters and aggregates are formed in patches and the sizes are dependent on the fractions. Ba2+ and Sr2+ induce the lateral phase separations to the same extent as Ca2+. Mg2+ is also effective but to a lesser extent. In acid solutions (pH 5.5), the Ca2+-induced lateral phase separations are of slightly lesser extent than in alkaline solution (pH 7.9). These results are compared with those for phosphatidylserine-phosphatidylcholine membranes reported previously and necessary conditions for the lateral phase separations are discussed.  相似文献   

19.
We used differential scanning calorimetry (DSC) and electron spin resonance (ESR) spectroscopy to investigate the interactions of Losartan, a potent, orally active Angiotensin II AT(1) receptor antagonist with phospholipid membranes. DSC results showed that Losartan sensitively affected the chain-melting behavior of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) bilayer membranes. ESR spectroscopy showed that phosphatidylcholines spin-labeled at the 5-position of the sn-2 acyl chain (n-PCSL with n=5), incorporated either in DMPC or DPPC bilayers containing Losartan, were restricted in motion both in the gel and in the liquid-crystalline membrane phases, indicating a location of the antagonist close to the interfacial region of the phosphatidylcholine bilayer. At high drug concentrations (mole fraction >/= x=0.60), the decrease in chain mobility registered by 5-PCSL in fluid-phase membranes is smaller than that found at lower concentrations, whereas that registered by 14-PCSL is further increased. This indicates a different mode of interaction with Losartan at high concentrations, possibly arising from a location deeper within the bilayer. Additionally, Losartan reduced the spin-spin broadening of 12-PCSL spin labels in the gel-phase of DMPC and DPPC bilayers. As a conclusion, our study has shown that Losartan interacts with phospholipid membranes by affecting both their thermotropic behavior and molecular mobility.  相似文献   

20.
Deuterium nuclear magnetic resonance (2H-NMR) was used to investigate the structure and dynamics of the sn-2 hydrocarbon chain of semi-synthetical choline and ethanolamine plasmalogens in bilayers containing 0, 30, and 50 mol% cholesterol. The deuterium NMR spectra of the choline plasmalogen yielded well-resolved quadrupolar splittings which could be assigned to the corresponding hydrocarbon chain deuterons. The sn-2 acyl chain was found to adopt a similar conformation as observed in the corresponding diacyl phospholipid, however, the flexibility at the level of the C-2 methylene segment of the plasmalogen was increased. Deuterium NMR spectra of bilayers composed of the ethanolamine plasmalogen yielded quadrupolar splittings of the C-2 segment much larger than those of the corresponding diacyl lipids, suggesting that the sn-2 chain is oriented perpendicular to the membrane surface at all segments. Cholesterol increased the ordering of the choline plasmalogen acyl chain to the same extent as in diacyl lipid bilayers. T1 relaxation time measurements demonstrated only minor dynamical differences between choline plasmalogen and diacyl lipids in model membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号