首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schistosomiasis is a parasitic disease that is highly prevalent, especially in developing countries. Biomphalaria tenagophila is an important invertebrate host of Schistosoma mansoni in Brazil, with some strains (e.g. Cabo Frio) being highly susceptible to the parasite, whereas others (e.g. Taim) are completely resistant to infection. Therefore, B. tenagophila is an important research model for studying immune defense mechanisms against S. mansoni. The internal defense system (IDS) of the snail comprises hemocytes and hemolymph factors acting together to recognize self from non-self molecular patterns to eliminate the threat of infection. We performed experiments to understand the cellular defenses related to the resistance and/or susceptibility of B. tenagophila to S. mansoni. During the early stages of infection, fibrous host cells of both snail strains were arranged as a thin layer surrounding the sporocysts. However, at later stages of infection, the cellular reactions in resistant snails were increasingly more intense, with thicker layers surrounding the parasites, in contrast to susceptible strains. All parasites were damaged or destroyed inside resistant snails after 10 h of infection. By contrast, parasites inside susceptible snails appeared to be morphologically healthy. We also performed experiments using isolated hemocytes from the two strains interacting with sporocysts. Hemocyte attachment started as early as 1 h after initial infection in both strains, but the killing of sporocysts was exclusive to hemocytes from the resistant strain and was time course dependent. The resistant strain was able to kill all sporocysts. In conclusion, our study revealed important aspects of the initial process of infection related to immune defense responses of strains of B. tenagophila that were resistant to S. mansoni compared with strains that were susceptible. Such information is relevant for the survival or death of the parasites and so is important in the development of control measures against this parasite.  相似文献   

2.
In schistosomiasis, the host/parasite interaction remains not completely understood. Many questions related to the susceptibility of snails to infection by respective trematode still remain unanswered. The control of schistosomiasis requires a good understanding of the host/parasite association. In this work, the susceptibility/resistance to Schistosoma mansoni infection within Biomphalaria alexandrina snails were studied starting one month post infection and continuing thereafter weekly up to 10 weeks after miracidia exposure. Genetic variations between susceptible and resistant strains to Schistosoma infection within B. alexandrina snails using random amplified polymorphic DNA analysis technique were also carried out. The results showed that 39.8% of the examined field snails were resistant, while 60.2% of these snails showed high infection rates.In the resistant genotype snails, OPA-02 primer produced a major low molecular weight marker 430 bp. Among the two snail strains there were interpopulational variations, while the individual specimens from the same snail strain, either susceptible or resistant, record semi-identical genetic bands. Also, the resistant character was ascendant in contrast to a decline in the susceptibility of snails from one generation to the next.  相似文献   

3.
The fate of Schistosoma mansoni (Trematoda) sporocysts in its molluscan host Biomphalaria glabrata (Gastropoda) is determined by circulating phagocytes (hemocytes). When the parasite invades a resistant snail, it is attacked and destroyed by hemocytes, whereas in a susceptible host it remains unaffected. We used 3 inbred strains of B. glabrata: 13-16-R1 and 10-R2, which are resistant to the PR-1 strain of S. mansoni, and M-line Oregon (MO), which is susceptible to PR-1. In an in vitro killing assay using plasma-free hemocytes from these strains, the rate of parasite killing corresponded closely to the rate by which S. mansoni sporocysts are killed in vivo. Hemocytes from resistant snails killed more than 80% of S. mansoni sporocysts within 48 hr, whereas sporocyst mortality in the presence of hemocytes from susceptible snails was <10%. Using this in vitro assay, we assessed the involvement of reactive oxygen species (ROS) produced by resistant hemocytes, during killing of S. mansoni sporocysts. Inhibition of NADPH oxidase significantly reduced sporocyst killing by 13-16-R1 hemocytes, indicating that ROS play an important role in normal killing. Reduction of hydrogen peroxide (H2O2) by including catalase in the killing assay increased parasite viability. Reduction of superoxide (O2-), however, by addition of superoxide dismutase or scavenging of hydroxyl radicals (*OH) and hypochlorous acid (HOCl) by addition of hypotaurine did not alter the rate of sporocyst killing by resistant hemocytes. We conclude that H2O2 is the ROS mainly responsible for killing.  相似文献   

4.
The genetics of the snail Biomphalaria glabrata is better characterized than that of any other intermediate host of schistosomes of humans. Using techniques of selective breeding, several snail stocks have been developed that consistently display resistant or susceptible phenotypes. Investigators using these stocks have learned that several snail and parasite genes influence the course of parasite development. Here, Charles Richards, Matty Knight and Fred Lewis discuss the importance of the snail's genetics in categorizing resistance in this complex invertebrate, some recent molecular evidence that may help us understand several of the problems that still remain, and some challenges lying ahead for investigators in this field.  相似文献   

5.
6.
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within‐colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.  相似文献   

7.
Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self‐fertilizing species. We here focus on the self‐fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none‐to‐low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large‐scale flash invasion may affect the spread of fasciolosis.  相似文献   

8.
Host-parasite interactions influence host population growth, host evolution and parasite success. We examined the interactions among Myxobolus cerebralis, the parasite that causes salmonid whirling disease, and resistant and susceptible strains of the oligochaete host Tubifex tubifex. Strains of T. tubifex with diverse genotypes often coexist in nature and have variable susceptibilities to M. cerebralis infection. Further, parasite proliferation differs by several orders of magnitude among T. tubifex strains. We examined total biomass produced by individual T. tubifex, including progeny production and adult growth, parasite proliferation and prevalence of infection using 2 strains of T. tubifex at 2 myxospore doses in a response-surface experimental design. Total biomass production per individual oligochaete and progeny biomass produced by an individual adult oligochaete were density-dependent for both resistant and susceptible individuals and the effects did not change with the addition of myxospores. However, both resistant and susceptible adults had highest growth when exposed to M. cerebralis. The presence of resistant oligochaetes in mixed cultures did not reduce the infection prevalence or parasite proliferation in susceptible individuals. In natural aquatic communities, resistant strains of T. tubifex may not reduce the effects of M. cerebralis on the salmonid host, particularly if sufficient numbers of susceptible T. tubifex are present.  相似文献   

9.
In recent studies of associations between host and parasite, there has been a tendency to consider the internal defence mechanisms of the mollusc as pivotal in the relationship. However, evolution is a population-based phenomenon, and it is by considering populations rather than individuals that the success of these associations can best be appreciated. Among susceptible host species within the biocoenosis, truly resistant strains appear to be remarkably rare. Clive Shiff here examines mechanisms of defence or avoidance among molluscan hosts of tremotodes from both the internal and ecological perspective.  相似文献   

10.
11.
Carton Y  Nappi AJ 《Immunogenetics》2001,52(3-4):157-164
Host-parasite relationships represent integrating adaptations of considerable complexity involving the host's immune capacity to both recognize and destroy the parasite, and the latter's ability to successfully invade the host and to circumvent its immune response. Compatibility in Drosophila-parasitic wasp (parasitoid) associations has been shown to have a genetic basis, and to be both species and strain specific. Studies using resistant and susceptible strains of Drosophila melanogaster infected with virulent and avirulent strains of the wasp Leptopilina boulardi demonstrate that the success of the host cellular immune response depends on the genetic status of both host and parasitoid. Immunological, physiological, biochemical, and genetic data form the bases of a two-component model proposed here to account for the observed specificity and complexity of two coevolved adaptations, host nonself recognition and parasitoid virulence.  相似文献   

12.
Schistosomiasis is an infectious disease infecting mammals as the definitive host and fresh water snails as the intermediate host. Understanding the molecular and biochemical relationship between the causative schistosome parasite and its hosts will be key to understanding and ultimately treating and/or eradicating the disease. There is increasing evidence that pathogens that have co-evolved with their hosts can manipulate their hosts'' behaviour at various levels to augment an infection. Bacteria, for example, can induce beneficial chromatin remodelling of the host genome. We have previously shown in vitro that Biomphalaria glabrata embryonic cells co-cultured with schistosome miracidia display genes changing their nuclear location and becoming up-regulated. This also happens in vivo in live intact snails, where early exposure to miracidia also elicits non-random repositioning of genes. We reveal differences in the nuclear repositioning between the response of parasite susceptible snails as compared to resistant snails and with normal or live, attenuated parasites. Interestingly, the stress response gene heat shock protein (Hsp) 70 is only repositioned and then up-regulated in susceptible snails with the normal parasite. This movement and change in gene expression seems to be controlled by the parasite. Other differences in the behaviour of genes support the view that some genes are responding to tissue damage, for example the ferritin genes move and are up-regulated whether the snails are either susceptible or resistant and upon exposure to either normal or attenuated parasite. This is the first time host genome reorganisation has been seen in a parasitic host and only the second time for any pathogen. We believe that the parasite elicits a spatio-epigenetic reorganisation of the host genome to induce favourable gene expression for itself and this might represent a fundamental mechanism present in the human host infected with schistosome cercariae as well as in other host-pathogen relationships.  相似文献   

13.
Gene flow and the genetic structure of host and parasite populations are critical to the coevolutionary process, including the conditions under which antagonistic coevolution favors sexual reproduction. Here we compare the genetic structures of different populations of a freshwater New Zealand snail (Potamopyrgus antipodarum) with its trematode parasite (Microphallus sp.) using allozyme frequency data. Allozyme variation among snail populations was found to be highly structured among lakes; but for the parasite there was little allozyme structure among lake populations, suggesting much higher levels of parasite gene flow. The overall pattern of variation was confirmed with principal component analysis, which also showed that the organization of genetic differentiation for the snail (but not the parasite) was strongly related to the geographic arrangement of lakes. Some snail populations from different sides of the Alps near mountain passes were more similar to each other than to other snail populations on the same side of the Alps. Furthermore, genetic distances among parasite populations were correlated with the genetic distances among host populations, and genetic distances among both host and parasite populations were correlated with “stepping-stone” distances among lakes. Hence, the host snail and its trematode parasite seem to be dispersing to adjacent lakes in a stepping-stone fashion, although parasite dispersal among lakes is clearly greater. High parasite gene flow should help to continuously reintroduce genetic diversity within local populations where strong selection might otherwise isolate “host races.” Parasite gene flow can thereby facilitate the coevolutionary (Red Queen) dynamics that confer an advantage to sexual reproduction by restoring lost genetic variation.  相似文献   

14.

Background

Schistosomiasis has a considerable impact on public health in many tropical and subtropical areas. In the new world, schistosomiasis is caused by the digenetic trematode Schistosoma mansoni. Chemotherapy is the main measure for controlling schistosomiasis, and the current drug of choice for treatment is praziquantel (PZQ). Although PZQ is efficient and safe, its repetitive large-scale use in endemic areas may lead to the selection of resistant strains. Isolates less susceptible to PZQ have been found in the field and selected for in the laboratory. The impact of selecting strains with a decreased susceptibility phenotype on disease dynamics and parasite population genetics is not fully understood. This study addresses the impact of PZQ pressure on the genetics of a laboratory population by analyzing frequency variations of polymorphic genetic markers.

Methodology

Infected mice were treated with increasing PZQ doses until the highest dose of 3×300 mg/Kg was reached. The effect of PZQ treatment on the parasite population was assessed using five polymorphic microsatellite markers. Parasitological and genetic data were compared with those of the untreated control. After six parasite generations submitted to treatment, it was possible to obtain a S. mansoni population with decreased susceptibility to PZQ. In our experiments we also observed that female worms were more susceptible to PZQ than male worms.

Conclusions

The selective pressure exerted by PZQ led to decreased genetic variability in S. mansoni and increased endogamy. The understanding of how S. mansoni populations respond to successive drug pressure has important implications on the appearance and maintenance of a PZQ resistance phenotype in endemic regions.  相似文献   

15.
Armillaria root disease affects fruit and nut crops, timber trees and ornamentals in boreal, temperate and tropical regions of the world. The causal pathogens are members of the genus Armillaria (Basidiomycota, Physalacriaceae). This review summarizes the state of knowledge and highlights recent advances in Armillaria research. Taxonomy: Armillaria includes more than 40 morphological species. However, the identification and delineation of species on the basis of morphological characters are problematic, resulting in many species being undetected. Implementation of the biological species' concept and DNA sequence comparisons in the contemporary taxonomy of Armillaria have led to the discovery of a number of new species that are not linked to described morphological species. Host range: Armillaria exhibits a range of symbioses with both plants and fungi. As plant pathogens, Armillaria species have broad host ranges, infecting mostly woody species. Armillaria can also colonize orchids Galeola and Gastrodia but, in this case, the fungus is the host and the plant is the parasite. Similar to its contrasting relationships with plants, Armillaria acts as either host or parasite in its interactions with other fungi. Disease control: Recent research on post-infection controls has revealed promising alternatives to the former pre-plant eradication attempts with soil fumigants, which are now being regulated more heavily or banned outright because of their negative effects on the environment. New study tools for genetic manipulation of the pathogen and characterization of the molecular basis of the host response will greatly advance the development of resistant rootstocks in a new stage of research. The depth of the research, regardless of whether traditional or genomic approaches are used, will depend on a clear understanding of where the different propagules of Armillaria attack a root system, which of the pathogen's diverse biolymer-degrading enzymes and secondary metabolites facilitate infection, and how the course of infection differs between resistant and susceptible hosts.  相似文献   

16.
17.
Salmonid whirling disease caused by the metazoan parasite Myxobolus cerebralis is an ongoing problem in wild and farmed rainbow trout Oncorhynchus mykiss populations. Rainbow trout from different strains vary in susceptibility to the parasite. Identification of underlying mechanisms could be a starting point for improved control of the disease. We conducted infection trials using 2 rainbow trout strains and brown trout Salmo trutta fario, a species not susceptible to the parasite, to investigate host immune response and resistance mechanisms. We compared expression levels of 2 natural resistance-associated macrophage proteins (Nramp alpha and beta) after infection with M. cerebralis. Total RNA was extracted from skin, muscle, kidney, head and spinal column, and gene expression was quantified by real-time PCR. Significant decreases in expression of both genes were observed at different time points in the infected susceptible rainbow trout compared to the non-infected group. Furthermore, the OmNramp alpha (O. mykiss natural resistance-associated macrophage protein alpha) sequences in 2 resistant and 1 non-resistant rainbow trout strain were analysed and compared for sequence aberrations.  相似文献   

18.
Here we assess the role of parasite genetic variation in host disease phenotype in human schistosomiasis by implementing concepts and techniques from environmental association analysis in evolutionary epidemiology. Schistosomiasis is a tropical disease that affects more than 200 million people worldwide and is caused by parasitic flatworms belonging to the genus Schistosoma. While the role of host genetics has been extensively studied and demonstrated, nothing is yet known on the contribution of parasite genetic variation to host disease phenotype in human schistosomiasis. In this study microsatellite genotypes of 1561 Schistosoma mansoni larvae collected from 44 human hosts in Senegal were linked to host characteristics such as age, gender, infection intensity, liver and bladder morbidity by means of multivariate regression methods (on each parasite locus separately). This revealed a highly significant association between allelic variation at the parasite locus L46951 and host infection intensity and bladder morbidity. Locus L46951 is located in the 3′ untranslated region of the cGMP-dependent protein kinase gene that is expressed in reproductive organs of adult schistosome worms and appears to be linked to egg production. This putative link between parasite genetic variation and schistosomiasis disease phenotype sets the stage for further functional research.  相似文献   

19.
Resistant (Taim, RS) and susceptible albino (Joinville, SC) Biomphalaria tenagophila populations were kept together, at different proportions, throughout a 18-month-period. Some of the snail groups were submitted to Schistosoma mansoni infection. The targets of this study were (a) to analyze the populational dynamics among resistant and susceptible individuals to S. mansoni; (b) to study the resistance phenotype in descendants of cross-breeding; (c) to observe whether the parasite could exert any kind of selection in those snail populations. Throughout the experiment it could be observed that the susceptible B. tenagophila strain (Joinville) underwent a selective pressure of the parasite that was negative, since the individuals showed a high mortality rate. Although B. tenagophila (Taim) population presented a higher mortality rate without pressure of the parasite, this event was compensated by a reproductive capacity. B. tenagophila Taim was more fecund than B. tenagophila Joinville and was able to transmit the resistance character to their descendants. F1 generation obtained by cross-breeding between resistant and susceptible lineages was completely resistant to S. mansoni infection, irrespective of the Taim proportion. Moreover, less than 5% of F2 progeny were susceptible to S. mansoni infection.  相似文献   

20.
Mutapi F 《Parasitology》2012,139(9):1195-1204
Schistosomiasis is a major human helminth infection endemic in developing countries. Urogenital schistosomiasis, caused by S. haematobium, is the most prevalent human schistosome disease in sub-Saharan Africa. Currently control of schistosome infection is by treatment of infected people with the anthelmintic drug praziquantel, but there are calls for continued efforts to develop a vaccine against the parasites. In order for successful vaccine development, it is necessary to understand the biology and molecular characteristics of the parasite. Ultimately, there is need to understand the nature and dynamics of the relationship between the parasite and the natural host. Thus, my studies have focused on molecular characterization of different parasite stages and integrating this information with quantitative approaches to investigate the nature and development of protective immunity against schistosomes in humans. Proteomics has proved a powerful tool in these studies allowing the proteins expressed by the parasite to be characterized at a molecular and immunological level. In this review, the application of proteomic approaches to understanding the human-schistosome relationship as well as testing specific hypotheses on the nature and development of schistosome-specific immune responses is discussed. The contribution of these approaches to informing schistosome vaccine development is highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号