首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary In order to produce a triple mutant, sexual crosses between a chlorophyll-deficient, streptomycin-resistant mutant of Nicotiana tabacum (SA) and a kanamycin-resistant transformant of N. tabacum (KR.) were carried out. From the offspring of this cross, a triple mutant (KR-SA) was selected. In N. tabacum KR-SA, chlorophyll deficiency is due to recessive mutation in the nuclear genome, streptomycin resistance is due to a dominant mutation in the chloroplast genome, and kanamycin resistance is shown to be a dominant nuclear marker. Cell suspension protoplasts of N. tabacum KRSA were fused with callus protoplasts of Solanum melongena by dextran treatment. Somatic hybrid plants were selected for streptomycin resistance and the ability to produce clorophyll in regenerated plants. By using this selection system, green plants were recovered from two colonies. When these green plants were then tested for kanamycin resistance, all analyzed plants carried this trait. In addition, the hybrid nature of these plants was confirmed by investigation of the peroxidase isozyme. The present results show that the use of N. tabacum KR-SA in studies of somatic hybridization makes it possible to select somatic hybrid plants easily and provides information of the N. tabacum genome.Chemical Regulation of Biomechanism, The Institute of Physical and Chemical Research, Wako 351-01, Japan  相似文献   

2.
Asymmetric hybrid plants were obtained from fused protoplasts of a monocotyledon (Oryza sativa L.) and a dicotyledon (Daucus carota L.). X-ray-irradiated protoplasts isolated from a cytoplasmic malesterile (cms) carrot suspension culture were fused with iodoacetoamide-treated protoplasts isolated from a 5-methyltryptophan (5MT)-resistant rice suspension culture by electrofusion. The complementary recovered cells divided and formed colonies, which were then cultivated on regeneration medium supplemented with 25mg/l 5MT to eliminate any escaped carrot cells. Somatic hybrids were regenerated from 5 of the 5MT-resistant colonies. The morphologies of most of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells possessed 20–22 chromosomes and were resistant to 5MT. An isozyme analysis revealed that several regenerated plants had the peroxidase isozyme patterns of both parents. A Southern hybridization analysis with non-radioactively labelled DNA fragments of the rgp1 gene showed that regenerated plants had hybridizing bands from both rice and carrot. Chloroplast (cp) and mitochondrial (mt) DNAs were also analyzed by Southern hybridization by using several probes. CpDNA patterns of the regenerated plants were indistinguishable from those of the carrot parent. However 1 of the regenerated plants had a novel band pattern of mtDNA that was not detected in either of the parents, indicating a possible recombination of mitochondrial genomes.  相似文献   

3.
Summary Mesophyll protoplasts of the kanamycin-resistant nightshade, Atropa belladonna, were fused with mesophyll protoplasts of the phosphinothricin resistant-tobacco, Nicotiana tabacum. A total of 447 colonies resistant to both inhibitors was selected. Most of them regenerated shoots with morphology similar to one of the earlier obtained and described symmetric somatic hybrids Nicotiana + Atropa. However, three colonies (0.2%) regenerated vigorously growing tobacco-like shoots; they readily rooted, and after transfer to soil, developed into normal, fertile plants. Unlike their tobacco parental line, BarD, the obtained plants are resistant to kanamycin [they root normally in the presence of kanamycin (200 mg/1)] and possess activity of neomycin phosphotransferase (NPT II) with the same electrophoretic mobility as the one of the nightshade line. According to Southern blot hybridization analysis carried out with the use of radioactively labeled cloned fragments of the Citrus lemon ribosomal DNA repeat, as well as with Nicotiana plumbaginifolia genus-specific, interspersed repeat Inp, the kanamycin-resistant plants under investigation have only species-specific hybridizing bands from tobacco. Cytological analysis of the chromosome sets shows that plants of all three lines possess 48 large chromosomes similar to Nicotiana tabacum ones (2n = 48), and one small extra chromosome (chromosome fragment) similar to Atropa belladonna ones (2n = 72). Available data allow the conclusion that highly asymmetric, normal fertile somatic hybrids with a whole diploid Nicotiana tabacum genome and only part (not more than 2.8%) of an Atropa belladonna genome have been obtained without any pretreatment of a donor genome, although both these species are somatically congruent.  相似文献   

4.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

5.
Summary Leaf mesophyll protoplasts of a nitrate reductase deficient streptomycin resistant mutant of Nicotiana tabacum were fused with cell suspension protoplasts of wild type Petunia hybrida. Somatic hybrid cell colonies were selected for streptomycin resistance and nitrate reductase proficiency. Six independent cell lines, capable of growth in selection medium, were analysed by electrophoresis of callus peroxidases and leucine aminopeptidases and also by hybridization with rDNA and a chloroplast encoded gene as molecular probes. The results show that all six lines represented nuclear somatic hybrids, possessing the chloroplast of N. tabacum, at an early stage of development. However, after 6–12 months in culture, genomic incompatibility was observed resulting in the loss of most of the tobacco nuclear genome in the majority of the cell lines. One of the latter cell lines regenerated plants which possessed the chloroplast of N. tabacum in a predominantly P. hybrida nuclear background.  相似文献   

6.
Summary Defined cybridization was performed by one-to-one electrofusion (microfusion) of preselected protoplast-cytoplast pairs of male-fertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile, streptomycin-sensitive N. tabacum cms (N. bigelovii), followed by microculture of the fusion products until plant regeneration. Dominant selectable markers, namely, kanamycin resistance (nptII) and hygromycin B resistance (hpt) genes had been previously integrated in the nuclear genomes of the otherwise almost fully isogenic parental strains using direct gene transfer to protoplasts. In addition to chromosome counts indicating the expected allotetraploid tobacco count of 48, the absence of the nucleus from the cytoplast donor line was confirmed by Southern blot hybridization using nptII and hpt probes, as well as by an in vitro selection test with leaf expiants and the corresponding enzyme assays for 30 cybrids. The cytoplasmic composition of the cybrids obtained was analyzed for chloroplast type using the streptomycin resistance/sensitivity locus. The fate of mitochondria in cybrids was checked by species-specific patterns in Southern analysis of restriction endonuclease digests of total DNA with N. sylvestris mitochondrial DNA probes.  相似文献   

7.
Summary Cytoplasts isolated from hypocotyl protoplasts of Raphanus sativus cv Kosena (cms line) by ultracentrifugation through Percoll/mannitol discontinuous gradient were fused with iodoacetamide(IOA)-treated protoplasts of Brassica napus cv Westar. Seventeen randomly selected regenerated plants were characterized for morphology and chromosome numbers. All of the regenerated plants had morphology identical to B. napus and 10 of them possessed the diploid chromosome number of B. napus. The remaining plants had chimeric or aneuploid chromosome numbers. The mitochondrial genomes in the 10 fusion products possessing the diploid chromosome numbers of B. napus were examined by Southern hybridization analysis. Four of the 10 plants contained mitochondrial DNA showing novel hybridization patterns. Of these 4 plants, 1 was male sterile, and 3 were male fertile. The remaining plants showed mitochondrial DNA patterns identical to B. napus and were male fertile.  相似文献   

8.
Summary Protoplasts of Daucus capillifolius isolated from a suspension culture (chromosome number above 60) were X-irradiated over lethal dose (60 krad) just prior to fusion. Protoplasts from D. carota cell line (chromosome number 17) were treated with 15 mM iodoacetamide and fused with the X-irradiated protoplasts. Putative cybrid plants were regenerated on Murashige and Skoog medium (MS) lacking 2,4-D. The regenerated plants possessed chromosome numbers of 17 (2n–1) or 34 (4n–2) and an identical leaf morphology to D. carota. Their mitochondrial DNAs (mtDNAs) were analysed with restriction endonucleases. Novel restriction fragments, not present in mtDNA digests from both parents, were observed in mtDNAs of regenerated plants. These results indicate successful formation of cybrids between D. capillifolius and D. carota by protoplast fusion.  相似文献   

9.
Summary Somatic hybrid/cybrid plants were obtained by microfusion of defined protoplast pairs from malefertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile (cms), streptomycin-sensitive N. tabacum cms (N. bigelovii) after microculture of recovered fusants. Genetic and molecular characterization of the organelle composition of 30 somatic hybrid/cybrid plants was performed. The fate of chloroplasts was assessed by an in vivo assay for streptomycin resistance/ sensitivity using leaf explants (R0 generation and R1 seedlings). For the analysis of the mitochondrial (mt) DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA, with three DNA probes of N. sylvestris mitochondrial origin. In addition, detailed histological and scanning electron microscopy studies on flower ontogeny were performed for representative somatic hybrids/cybrids showing interesting flower morphology. The present study demonstrates that electrofusion of individually selected pairs of protoplasts (microfusion) can be used for the controlled somatic hybridization of higher plants.Abbreviations ac alternate current - BAP benzyl aminopurine - cms cytoplasmic male sterile - dc direct current - NAA naphthalenacetic acid - SEM scanning electron microscopy  相似文献   

10.
In order to obtain plants that were somatic hybrids of barley (Hordeum vulgare L.) and carrot (Daucus carota L.), we fused protoplasts that had been isolated from 6-month-old suspension cultures of carrot cells with protoplasts isolated from barley mesophyll by electrofusion. After culture for 1 month at 25°C , the cells were cultured for 5 weeks at 4°C , and were then returned to 25°C for culture on a shoot-inducing medium. Three plants (nos. 1, 2 and 3) were regenerated from the cells. The morphology of the regenerated plants closely resembled that of the parental carrot plants. A cytological analysis of callus cultures induced from these plants indicated that most of the cells had about 24 chromosomes, fewer than the sum of the numbers of parent chromosomes which was 32. Southern hybridization analysis with fragments of the rgp1 gene used as probe showed that the regenerated plants contained both barley and carrot genomic DNA. Chloroplast (ct) and mitochondrial (mt) DNAs were also analyzed with several probes. The ctDNA of the regenerated plants yielded hybridization bands specific for both barley and carrot when one fragment of rice ctDNA was used as probe. Furthermore, the regenerated plants yielded a barley specific band and a novel band with another fragment of rice ct DNA as a probe. One of the regenerated plants (no. 1) yielded a novel pattern of hybridized bands of mt DNA (with an atp6 probe) that was not detected with either of the parents. These results indicated that the regenerated plants were somatic hybrids of barley and carrot and that recombination of both the chloroplast genomes and the mitochondrial genomes might have occurred. Received: 28 May 1996 / Accepted: 2 August 1996  相似文献   

11.
Summary Mesophyll protoplasts of plastome chlorophyll-deficient, streptomycin-resistant Nicotiana tabacum were fused with those of wild type Atropa belladonna using the polyethylene-glycol/high pH/high Ca++/dimethylsulfoxide method. Protoplasts were cultured in nutrient media suitable for regeneration of tobacco but not Atropa cells. In two experiments, a total of 41 cell lines have been selected as green colonies. Cytogenetic (chromosomal number and morphology) and biochemical (isozyme analyses of esterase, amylase and peroxidase) studies were used to evaluate the nuclear genetic constitution of regenerated plants. To study plastid genetic constitution, restriction endonuclease analysis of chloroplast DNA was performed. Three groups of regenerants have been identified: (a) nuclear hybrids (4 cell lines); (b) Atropa plants, most probably arising from rare surviving parental protoplasts (4 lines) and (c) Nicotiana/Atropa cybrids possessing a tobacco genome and an Atropa plastome (33 lines). Most of cybrids obtained were diploid, morphologically normal plants phenotypically similar to tobacco. Some plants flowered and yielded viable seeds. Part of cybrid regenerants were variegated, variegation being transmitted to sexual progeny. Electron microscopic analysis of the mesophyll cells of variegated leaves revealed the presence of heteroplastidic cells. Analysis of thylakoid membrane polypeptides shows that in the cybrids the content of at least one of the major polypeptides, presumably a chlorophyll a/b binding protein is drastically reduced.  相似文献   

12.
A cytological and molecular analysis was performed to assess the genetic uniformity and true-to-type character of plants regenerated from 20 week-old embryogenic suspension cultures of meadow fescue (Festuca pratensis Huds.), and compared to protoplastderived plants obtained from the same cell suspension. Cytological variation was not observed in a representative sample of plants regenerated directly from the embryogenic suspensions and from protoplasts isolated therefrom. Similarly, no restriction fragment length polymorphisms (RFLPs) were detected in the mitochondrial, plastid and nuclear genomes in the plants analyzed. Randomly amplified polymorphic DNA markers (RAPDs) have been used to characterise molecularly a set of mature meadow fescue plants regenerated from these in vitro cultures. RAPD markers using 18 different short oligonucleotide primers of arbitrary nucleotide sequence in combination with polymerase chain reaction (PCR) allowed the detection of pre-existing polymorphisms in the donor genotypes, but failed to reveal newly generated variation in the protoplast-derived plants compared to their equivalent suspensionculture regenerated materials.The genetic stability of meadow fescue plants regenerated from suspension cultures and protoplasts isolated therefrom and its implications on gene transfer technology for this species are discussed.Abbreviations PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism.  相似文献   

13.
Intergeneric asymmetric somatic hybrids have been obtained by the fusion of metabolically inactivated protoplasts from embryogenic suspension cultures ofFestuca arundinacea (recipient) and protoplasts from a non-morphogenic cell suspension ofLolium multiflorum (donor) irradiated with 10, 25, 50, 100, 250 and 500 Gy of X-rays. Regenerating calli led to the recovery of genotypically and phenotypically different asymmetric somatic hybridFestulolium plants. The genome composition of the asymmetric somatic hybrid clones was characterized by quantitative dot-blot hybridizations using dispersed repetitive DNA sequences specific to tall fescue and Italian ryegrass. Data from dot-blot hybridizations using two cloned Italian ryegrass-specific sequences as probes showed that irradiation favoured a unidirectional elimination of most or part of the donor chromosomes in asymmetric somatic hybrid clones obtained from fusion experiments using donor protoplasts irradiated at doses 250 Gy. Irradiation of cells of the donor parent with 500 Gy prior to protoplast fusion produced highly asymmetric nuclear hybrids with over 80% elimination of the donor genome as well as clones showing a complete loss of donor chromosomes. Further information on the degree of asymmetry in regenerated hybrid plants was obtained from chromosomal analysis including in situ hybridizations withL. multiflorum-specific repetitive sequences. A Southern blot hybridization analysis using one chloroplast and six mitochondrial-specific probes revealed preferentially recipient-type organelles in asymmetric somatic hybrid clones obtained from fusion experiments with donor protoplasts irradiated with doses higher than 100 Gy. It is concluded that the irradiation of donor cells before fusion at different doses can be used for producing both nuclear hybrids with limited donor DNA elimination or highly asymmetric nuclear hybrid plants in an intergeneric graminaceous combination. For a wide range of radiation doses tested (25–250Gy), the degree of the species-specific genome elimination from the irradiated partner seems not to be dose dependent. A bias towards recipient-type organelles was apparent when extensive donor nuclear genome elimination occurred.Abbreviations cpDNA Chloroplast DNA - 2, 4-D 2,4-dichlorophenoxyacetic acid - FDA fluorescein diacetate - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

14.
Summary To identify markers for fusion and transformation studies, cell suspension cultures of four members of theDaucus genus were examined to determine differences in culture conditions, isoenzyme patterns, and plastid DNA. The four were:D. carota subsp.sativus cv. Danvers,D. carota subsp.gummifer, D. capillifolius, andD. pusillus. Under appropriate conditions, all four grew well as liquid cell suspension cultures and regenerated from protoplasts into plants. Enzyme activities of homoserine dehydrogenase (HSDH) and alcohol dehydrogenase from cell culture extracts were analyzed on electrophoretic gels. Although only one form of HSDH was present in eachDaucus line, the rate of migration of HSDH from cv. Danvers was different from that of the other cell lines. Multiple isoenzymic forms of ADH were present in eachDaucus cultivar. Camparison of endonuclease restriction fragment patterns from plastid DNAs digested by BamHI revealed only small differences between plastid DNAs of cv. Danvers and subsp.Gummifer, whereas large differences were observed between cv. Danvers andD. pusillus plastid DNA patterns. No differences were found between cv. Danvers andD. capillifolius plastid DNA patterns when examined using eight different restriction enzymes. The data indicate that specific isoenzyme and organelle DNA restriction fragment patterns will be useful markers for precise identification of genomes of differentDaucus species in somatic hybridization experiments. This research was supported by the U.S. Department of Agriculture under Agreement 59-2246-1-1-737-0.  相似文献   

15.
Papaya (Carica papaya L.) production is affected by low temperatures that occur periodically in the subtropics. The C-repeat binding factor (CBF) gene family is known to induce the cold acclimation pathway in Arabidopsis thaliana. Embryogenic papaya cultures were induced from hypocotyls of “Sunrise Solo” zygotic embryos on semisolid induction medium. The CBF 1/CBF 3 genes along with the neomycin phosphotransferase (NPT II) gene were placed under the control of the CaMV 35 S promoter and introduced into a binary vector pGA 643. Embryogenic cultures were transformed with Agrobacterium strain GV 3101 harboring pGA 643. After selection of transformed embryogenic cultures for resistance to 300 mg l−1 kanamycin, somatic embryo development was initiated and transgenic plants were regenerated. The presence of the CBF transgenes in regenerated plants was confirmed by Southern blot hybridization. The papaya and the related cold-tolerant Vasconcella genomes were probed for the presence of cold inducible sequences using polymerase chain reaction (PCR). Possible cold inducible sequences were present in the Vasconcella genome but were absent in the Carica genome.  相似文献   

16.
Summary The combination in the nuclear genome of a dominant resistance marker (to select against unfused wild-type cells) and a recessive deficiency marker (to select against unfused mutant cells) in a cell line should provide a system for selecting fusion hybrids between the mutant line and any wild-type line. To test this idea, we fused protoplasts from a non-morphogenic cell line of Nicotiana tabacum which was kanamycin resistant (by transformation) and deficient in nitrate reductase (NR-K+) with protoplasts from N. tabacum cv. Petit Havana clone SR1, which provided resistance against streptomycin as an additional selectable marker (NR+K-SR+). Putative hybrids were selected using a culture medium containing no available reduced nitrogen source and 50 mg/l kanamycin sulphate. After regeneration into plants, the hybrid character was demonstrated from: (i) the morphological variation of the regenerants; (ii) the chromosome number; (iii) the ability to grow on medium without a reduced nitrogen source and containing kanamycin sulphate at 50 mg/l; (iv) the presence of nitrate reductase activity; (v) the presence of the gene coding for neomycin phosphotransferase, which provides resistance to kanamycin sulphate; (vi) callus formation from leaves on medium containing 1 g/l streptomycin or 50 mg/l kanamycin sulphate; (vii) F1 plants containing nitrate reductase and the gene for neomycin phosphotransferase. Fusions between the mutant cell line (NR-K+) and three wild-type tobacco species and subsequent cultivation on medium containing no available nitrogen source but 50 mg/l kanamycin sulphate resulted in callus formation with all combinations, while hybrid plants were only regenerated when N. sylvestris was the fusion partner.  相似文献   

17.
Summary Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors.Dedicated to Professor Georg Melchers to celebrate his 50-year association with the journal  相似文献   

18.
An effective selection system preceded by double inactivation of parental protoplasts was used to transfer Nicotiana suaveolens Leh. cytoplasmic male sterility into a commercial tobacco (N. tabacum L.) breeding line. Mesophyll protoplasts from transformed plants of N. tabacum cultivar WZ2-3-1-1 possessing a neomycin phosphotransferase II gene were used as the nuclear donors, while those isolated from N. suaveolens plants carrying a chloroplast mutation for resistance to spectinomycin, induced using nitrosomethyl urea, were the cytoplasm donors in somatic cybridizations. Prior to fusion, nuclear donor protoplasts were inactivated with iodoacetamide or rhodamine 6G, while those of the cytoplasm donor were inactivated by X-irradiation. The resultant microcalli were cultured on a shoot regeneration medium containing both kanamycin and spectinomycin to select cybrids. Only regenerants that had typical characteristics of the N. tabacum cultivar were selected for transfer to the glasshouse. Four putative cytoplasmic male-sterile (CMS) plants, out of a total of 44 regenerated plants transferred to the glasshouse, were obtained. Intraspecific somatic transfers of the CMS trait between N. tabacum cultivars with distinctlydifferent morphologies using single inactivation and nonselective shoot regeneration medium were demonstrated. The implications of the results for practical tobacco breeding as a means of circumventing lengthy backcrossing procedures are discussed.  相似文献   

19.
Summary Gametosomatic hybrids produced by the fusion of microspore protoplasts of Nicotiana tabacum Km+Sr+ with somatic cell protoplasts of N. rustica were analysed for their organelle composition. For the analysis of mitochondrial (mt)DNA, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA and mtDNA with four DNA probes of mitochondrial origin: cytochrome oxidase subunit I, cytochrome oxidase subunit II, 26s rDNA and 5s-18s rDNA. Of the 22 hybrids analyzed, some had parental-type pattern for some probes and novel-type for the others, indicating interaction between mtDNA of the two parent species. For chloroplast (cp)DNA analysis, species-specific patterns were generated by Southern hybridization of restriction endonuclease digests of total DNA with large subunits of ribulose bisphosphate carboxylase and cpDNA as probes. All the hybrids had N. rustica-specific patterns. Hybrids were not resistant to streptomycin, a trait encoded by the chloroplast genome of N. tabacum. In gametosomatic fusions of the two Nicotiana species, mitochondria but not the chloroplasts are transmitted from the parent contributing microspore protoplasts.  相似文献   

20.
Summary Direct gene transfer has proved to be an efficient transformation method for arabidopsis thaliana, a member of the Brassicaceae. Transgenic Arabidopsis plants resistant to hygromycin B have been regenerated from mesophyll protoplasts treated with polyethylene glycol and plasmid DNA carrying the hygromycin phosphotransferase (HPT) gene under the control of the 35 S promoter of cauliflower mosaic virus. The transformation procedure reproducibly yields transformants at frequencies of approximately 1×10-4 (based on the number of protoplasts treated) or 5% (based on the number of regenerating calli). DNA from plants regenerated from hygromycin resistant colonies was analysed by Southern blot hybridization demonstrating that the foreign gene is stably integrated into the plant chromosome. Genetic analysis of several hygromycin resistant plants showed that the HPT gene is transmitted to the progeny. Transformation experiments performed with a selectable and a non-selectable gene on separate plasmids resulted in a co-transformation rate of functionally active copies in about 25% of the transformants analysed. Hence this approach can be used to introduce non-selectable genes into the Arabidopsis genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号