首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of DNA synthesis in Datura innoxia Mill. cell cultures was determined by flow cytometry. A large fraction of the total population of cells traversed the cell cycle in synchrony when exposed to fresh medium. One hour after transfer to fresh medium, 37% of the cells were found in the process of DNA synthesis. After 24 hours of culture, 66% of the cells had accumulated in G2 phase, and underwent cell division simultaneously. Only 10% of the cells remained in G0 or G1. Transfer of cells into a medium, 80% (v/v) of which was conditioned by a sister culture for 2 days, was adequate to inhibit this simultaneous traverse of the cell cycle. A large proportion of dividing cells could be arrested at the G0 + G1/S boundary by exposure to 10 millimolar hydroxyurea (HU) for 12 to 24 hours. Inhibition of DNA synthesis by HU was reversible, and when resuspended into fresh culture medium synchronized cells resumed the cell cycle. Consequently, a large fraction of the cell population could be obtained in the G2 phase. However, reversal of G1 arrested cells was not complete and a fraction of cells did not initiate DNA synthesis. Seventy-four percent of the cells simultaneously reached 4C DNA content whereas the frequency of cells which remained in G0 + G1 phase was approximately 17%. Incorporation of radioactive precursors into DNA and proteins identified a population of nondividing cells which represents the fraction of cells in G0. The frequency of cells entering G0 was 11% at each generation. Our results indicate that almost 100% of the population of dividing cells synchronously traversed the cell cycle following suspension in fresh medium.  相似文献   

2.
Cellular responses following DNA damage are ubiquitous in the biological world. In response to DNA damage, cell cycle checkpoints are activated, which delay cell cycle progression and most likely serve to allow time for repair. One important checkpoint in mammalian cells, activated in the G1 phase of the cell cycle, is dependent on the p53 tumor suppressor gene product. While p53 is responsible for inducing G1 arrest, the product of the MDM2 gene is believed to alleviate the arrest, allowing continuation of the cell cycle after a transient delay. Inasmuch as MDM2 and WAF1/CIP1 are transactivated by p53, while MDM2 binds to and modulates the activity of p53, a "feedback loop" is thus created. This pathway has been highly conserved in mammalian cells, but its presence outside of vertebrates is unknown. By using human MDM2 and WAF1/CIP1 cDNA probes, and monoclonal antibodies to p53 and Mdm2, we demonstrate in insect cell lines evidence for the existence of p53-, MDM2-, and WAF1/CIP1 -like molecules and a p53-regulated pathway following treatment by DNA-damaging agents.  相似文献   

3.
Summary Analysis of the cell cycle by three methods has revealed unusual kinetics of proliferation in tumour derived suspensions ofCrepis capillaris. The different methods of analysis yield different estimates of cycle phase durations, and such discrepancies have been explained in terms of low growth fractions with rapid total cycle traverse. Specifically, confidence in the estimation of G2 duration by the fraction of labelled mitosis analysis, and comparison with shorter G2 estimates obtained by the two other methods, suggests that cells drop out in G1. However, cells which do not drop out of the proliferative compartment traverse G1 extremely rapidly. Extremely short cell cycle durations in which the G1 phase is virtually non-existent are uncharacteristic of plant cell suspension cultures, in which the G1 phase has previously been shown to be extended as compared with meristematic root tip cells. A model has been proposed in which a central core of rapidly dividing cells continuously loses cells into a subpopulation of resting or G0 cells with the G1 DNA content. Similarities between plant and animal tumours with respect to cell growth and division are discussed.  相似文献   

4.
Summary A cell cycle analysis of theTrichoplusia ni (TN-368) insect cell line is described. By means of autoradiography and percent labeled metaphase data, the cell cycle parameters were determined to be as follows: S, 4.5 hr; G2, 8.5 hr; M, 0.5 hr; G1, 1.0 hr; the total cell time being 14.5 hr. A synchronization procedure using 50mm thymidine in a double block procedure was used to provide a method of obtaining a large number of cells in particular cell cycle phases, especially S and G2. This work was supported in part by U.S. Environmental Protection Agency Grant R-802516.  相似文献   

5.
6.
The cell cycle is at the center of growth, productivity, and death of mammalian cell cultures. There exists a need to identify and quantify major landmarks in the cell cycle of industrially relevant mammalian cell lines and its association with productivity; central for designing productivity optimization strategies. Herein, we studied the expression of three cyclins, under both perturbed and unperturbed growth, by flow cytometry in batch cultures of GS-NS0. The perturbed systems involved two different DNA synthesis inhibitors, thymidine and dimethyl sulfoxide (DMSO). This approach enables the establishment of characteristic cyclin profiles, timings, and thresholds. In particular, two G1 class cyclins (D1 and E1), and one G2 cyclin (B1) were investigated. Cyclin B1 showed a clear cell cycle phase-specific expression increasing during G2 phase where it was approximately 40% higher when compared to G1 phase. Similarly, cyclin E1 showed a clear pattern being expressed approximately 10% higher in G1 compared to G2 phase and decreased through S phase. Cyclin D1 expression was fairly invariable throughout the cell cycle phases. The observed patterns provide a blueprint of the cell line's cell cycle, which can be used for the development of biologically accurate and experimentally validated distributed cell cycle models.  相似文献   

7.
The question of whether lymphocytes which have once been activated and have completed one or several cell cycle(s) can return to the G0 phase and stay ready for a new activation (G0-G1 transition), rather than simply die, was investigated. To do so interleukin 2 (IL-2) was removed from cultures of continuously proliferating human T lymphocytes and the formation of resting (G0) cells was measured. Kinetic analyses in freshly prepared peripheral blood lymphocytes (PBL) revealed that the onset of detectable RNA synthesis and the appearance of structures binding the anti-Tac antibody occurred simultaneously. This allowed the expansion of the definition of G0 T lymphocytes as cells having a low RNA (and DNA) content, and no Tac antigen. When cultured human T cells proliferating continuously by means of IL-2 were characterized in terms of their distribution in the cell cycle, 7 days after the initial PHA stimulation, it could be demonstrated that very few cells were in the G0 phase, supporting the concept of direct S/G2/M-G1 transition. However, when IL-2 was removed from the cultures, the [3H]thymidine incorporation per 104 cells and correspondingly the number of cells in the S/G2/M and G1 phases were reduced drastically and during the following 72-hr period, the number of G0 cells increased markedly. Restimulation of such in vitro formed G0 cells, under conditions permitting observation of their shift from the G0 to G0 phase, demonstrated that most cells could respond normally. Based on these observations, it was concluded that IL-2 not only ensures T-lymphocyte survival and proliferation, but IL-2 starvation induces many continuously proliferating T lymphocytes to stop cycling and to return to the G0 phase of the cell cycle where they remain functional.  相似文献   

8.
9.
10.
Objectives: Tumour cells respond to ionizing radiation by cycle arrest, cell death or repair and possible regrowth. We have developed a dynamic mathematical model of the cell cycle to incorporate transition probabilities for entry into DNA replication and mitosis. In this study, we used the model to analyse effects of radiation on cultures of five human melanoma cell lines. Materials and methods: Cell lines were irradiated (9 Gy) prior to further culture and harvesting at multiple points up to 96 h later. Cells were fixed, stained with propidium iodide and analysed for G1‐, S‐ and G2/M‐phase cells by flow cytometry. Data for all time points were fitted to a mathematical model. To provide unique solutions, cultures were grown in the presence and absence of the mitotic poison paclitaxel, added to prevent cell division. Results: The model demonstrated that irradiation at 9 Gy induced G2‐phase arrest in all lines for at least 96 h. Two cell lines with wild‐type p53 status additionally exhibited G1‐phase arrest with recovery over 15 h, as well as evidence of cell loss. Resumption of cycling of surviving cells, as indicated by increases in G1/S and G2/M‐phase transitions, was broadly comparable with results of clonogenic assays. Conclusions: The results, combined with existing data from clonogenic survival assays, support the hypothesis that a dominant effect of radiation in these melanoma lines is the induction of long‐term cell cycle arrest.  相似文献   

11.
The calmodulin content of synchronized Chinese hamster ovary (CHO-K1) cells was determined at each phase of the cell cycle. The calmodulin content was minimum in the G1 phase, increased after the cells entered S phase and reached the maximum level at the late G2 or early M phase. When 30 μM of W-7 (calmodulin antagonist) was added at the S phase, the cell cycle was blocked at the late G2 or early M phase. The addition of W-7 also prevented the morphological changes caused by cholera toxin. These results suggest that calmodulin plays an important role in the phases through S to M, possibly in the initiation of DNA synthesis and in the mitosis.  相似文献   

12.
Prolyl oligopeptidase (POP) is a post-proline cleaving enzyme, which is widely distributed in various organs, with high levels in the brain. In this study, we investigated the effects of a selective POP inhibitor, 3-({4-[2-(E)-styrylphenoxy]butanoyl}-l-4-hydroxyprolyl)-thiazolidine (SUAM-14746), on the growth of NB-1 human neuroblastoma cells. SUAM-14746 treatment for 24–72 h suppresses the growth of NB-1 cells without cell death in a dose-dependent manner (10–60 μM). Similar suppressive effects were observed with another POP inhibitor benzyloxycarbonyl-thioprolyl-thioprolinal. The SUAM-14746-induced growth inhibition in NB-1 cells was associated with pronounced G0/G1 arrest and reduced levels of phosphorylated retinoblastoma protein (pRb), cyclin E, and cyclin dependent kinase (CDK) 2, and increased levels of the CDK inhibitor p27kip1 and the tumor suppressor p53. SUAM-14746 also induced transient inhibition of S and G2/M phase progression, which was correlated with retardation of the decrease in the levels of cyclins A and B. Moreover, RNAi-mediated knockdown of POP also led to inhibition of NB-1 cell growth and the effect was accompanied by G0/G1 arrest. These results indicate that POP is a part of the machinery that controls the cell cycle.  相似文献   

13.
Summary The relationships between cell kinetics and nuclear transformations in regeneration were investigated in the planarianPolycelis nigra by means of image analysis. A SAMBA 200 cell image processor was used to compute densitometric, textural and morphological parameters on Feulgen-stained nuclei in the blastema and near the cut 2–96 h after decapitation. On the basis of these parameters, the phase of the cell cycle (G1–G0, S, G2 and M) was identified and the variations in the percentage of cells in the various phases as well as the blastema cell number were computed against time after decapitation. It was demonstrated that the transection is followed by the sequential wasting of the M, G2, S and G1–G0 compartments. The depletion of a compartment was interpreted as being responsible for the subsequent recovery observed in the next one. The results show that cell proliferation at the section level is not sufficient to account for the increase of the blastema cell number during the first 48 h of regeneration, since the doubling time is about 12 h while the average cycle time is 48 h. It is thus suggested that G1–G0 cells migrate toward the section level, at least during the first 2 days of regeneration. Analysis of the nuclear profiles demonstrated that there are two different classes of G1–G0 cells: one corresponding to mature cells with a lot of condensed chromatin distributed in clumps within the nucleus, the other to immature cells with chromatin regularly distributed according to a rather homogeneous pattern. About one G1–G0 cell out of five is immature at the section level before decapitation while four cells out of five are immature as early as 8 h after the cut. This early inversion of the ratio between mature and immature cells argues in favour of an immigration of immature G1–G0 cells to the young blastema, where they are expected to accomplish only one cell cycle, and thus gives rise to mature cells.  相似文献   

14.
15.
A method for the evaluation of cell-production rates is described which combines flow cytometry (FCM) and the stathmokinetic method. By means of FCM it is possible to estimate the distribution of cells with G1, S and (G2+ M) DNA content in a population. As this method gives the relative (G2+ M) DNA content of cells within the cell cycle, it may be possible to evaluate cell-production rates by this technique. In the present study it was found that administration of a metaphase-arresting (stathmokinetic) agent, vincristine sulphate (VS), to asynchronous cell populations of three different murine tumour cell lines in vitro increased the peak representing cells with (G2+ M) DNA content as the number of mitotic (M) cells increased during the period of treatment. The accumulation of mitotic cells was determined by cell counts on smears under the microscope and compared with the increase in the (G2+ M) DNA peak measured by FCM as a function of time after the administration of VS. Good agreement was obtained between the cell-production rates as estimated by FCM and by mitotic counts in all three cell lines investigated.  相似文献   

16.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

17.
Cell-cycle synchronization of two diffusecoupled cells has been studied in the framework of the membrane model for the cell division cycle, proposed by Chernavskii et al. (1977). It has been shown semianalytically (using the averaging principle) and by computer stimulation that a) if the duration of theG1-phase (T G1 ) for two identical cells is comparable with the duration of the remaining cycle (T S+G2+M ), the lipid (L)-exchange results in a synchronization with phase difference =0. The antioxidant (A)-exchange leads to a phase-locking with =T 0/2 (whereT 0 is the cell cycle period; b) ifT G1 T S+G2+M (orT G1 T S+G2+M ) theL-exchange makes synchronization possible both with =0 and =T 0/2 while theA-exchange results in phase-locking with confined to the region 0 toT 0/2; c) for non-identical cells differing in the values of kinetic parameters, the locking band narrows as the population density increases (when some model parameters are close to the bifurcation thresholds). We expect that the cells selected artificially at a definite phase of cycle might maintain the synchronous division for a long time if the lipid exchange between cells were stimulated.  相似文献   

18.
19.
20.
Cycle inhibiting factors (Cif) constitute a broad family of cyclomodulins present in bacterial pathogens of invertebrates and mammals. Cif proteins are thought to be type III effectors capable of arresting the cell cycle at G2/M phase transition in human cell lines. We report here the first direct functional analysis of CifPl, from the entomopathogenic bacterium Photorhabdus luminescens, in its insect host. The cifPl gene was expressed in P. luminescens cultures in vitro. The resulting protein was released into the culture medium, unlike the well characterized type III effector LopT. During locust infection, cifPl was expressed in both the hemolymph and the hematopoietic organ, but was not essential for P. luminescens virulence. CifPl inhibited proliferation of the insect cell line Sf9, by blocking the cell cycle at the G2/M phase transition. It also triggered host cell death by apoptosis. The integrity of the CifPl catalytic triad is essential for the cell cycle arrest and pro-apoptotic activities of this protein. These results highlight, for the first time, the dual role of Cif in the control of host cell proliferation and apoptotic death in a non-mammalian cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号