首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohshiro T  Izumi Y 《Bioseparation》2000,9(3):185-188
DszC and DszA, DBT monooxygenase and DBT sulfone monooxygenase, respectively, involved in dibenzothiophene (DBT) desulfurization, were purified to homogeneity from Rhodococcus erythropolis D-1. The two enzymes were crystallized and enzymologically characterized. We found a high activity of flavin reductase in the non-DBT-desulfurizing bacterium, Paenibacillus polymyxa A-1, which is essential for DszC and A activities, and purified to homogeneity and characterized the enzyme.  相似文献   

2.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the K(m) values for NADH and FMN were 208 and 10.8 microM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35 degrees C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80 degrees C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705-1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

3.
The dibenzothiophene (DBT)-desulfurizing bacterium, Rhodococcus erythropolis D-1, removes sulfur from DBT to form 2-hydroxybiphenyl using four enzymes, DszC, DszA, DszB, and flavin reductase. In this study, we purified and characterized the flavin reductase from R. erythropolis D-1 grown in a medium containing DBT as the sole source of sulfur. It is conceivable that the enzyme is essential for two monooxygenase (DszC and DszA) reactions in vivo. The purified flavin reductase contains no chromogenic cofactors and was found to have a molecular mass of 86 kDa and four identical 22-kDa subunits. The enzyme catalyzed NADH-dependent reduction of flavin mononucleotide (FMN), and the Km values for NADH and FMN were 208 and 10.8 μM, respectively. Flavin adenine dinucleotide was a poor substrate, and NADPH was inert. The enzyme did not catalyze reduction of any nitroaromatic compound. The optimal temperature and optimal pH for enzyme activity were 35°C and 6.0, respectively, and the enzyme retained 30% of its activity after heat treatment at 80°C for 30 min. The N-terminal amino acid sequence of the purified flavin reductase was identical to that of DszD of R. erythropolis IGTS8 (K. A. Gray, O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires, Nat. Biotechnol. 14:1705–1709, 1996). The flavin reductase gene was amplified with primers designed by using dszD of R. erythropolis IGTS8, and the enzyme was overexpressed in Escherichia coli. The specific activity in crude extracts of the overexpressed strain was about 275-fold that of the wild-type strain.  相似文献   

4.
Flavin reductase is essential for the oxygenases involved in microbial dibenzothiophene (DBT) desulfurization. An enzyme of the thermophilic strain, Bacillus sp. DSM411, was selected to couple with DBT monooxygenase (DszC) from Rhodococcus erythropolis D-1. The flavin reductase was purified to homogeneity from Bacillus sp. DSM411, and the native enzyme was a monomer of M(r) 16 kDa. Although the best substrates were flavin mononucleotide and NADH, the enzyme also used other flavin compounds and acted slightly on nitroaromatic compounds and NADPH. The purified enzyme coupled with DszC and had a ferric reductase activity. Among the flavin reductases so far characterized, the present enzyme is the most thermophilic and thermostable. The gene coded for a protein of 155 amino acids with a calculated mass of 17,325 Da. The enzyme was overproduced in Escherichia coli, and the specific activity in the crude extracts was about 440-fold higher than that of the wild-type strain, Bacillus sp. DSM411.  相似文献   

5.
二苯并噻吩(DBT)及其衍生物微生物脱硫的4S途径需要4个酶(DszA,DszB,DszC and DszD)参与催化。其中DBT单加氧酶(DszC or DBT-MO)和DBT-砜单加氧酶(DszA or DBTO2-MO)都是黄素依赖型氧化酶,它们的催化反应需要菌体中还原型的黄素单核苷酸(FMNH2),FMNH2由辅酶黄素还原酶(DszD)再生。因此,共表达DszA,DszB,DszC和DszD可以提高整个脱硫途径的速率。构建了两个不相容性表达载体pBADD和paN2并在大肠杆菌中实现了4个脱硫酶基因的共表达。DszA,DszB,DszC和DszD的可溶性蛋白表达量分别占菌体总蛋白质的7.6%,3.5%,3.1%和18%。共表达时的脱硫活性是单独用paN2表达时的5.4倍,并对工程菌休止细胞脱除模拟柴油中DBT的活性进行了研究。  相似文献   

6.
Inorganic sulfate is the preferred sulfur source for the growth of most microorganisms but, in its absence, many organosulfur compounds can be degraded microbially to provide sulfur. Desulfurization of dibenzothiophene (DBT) by Rhodococcus sp. and of aromatic sulfonates by Pseudomonas sp. has considerable biotechnological potential. Both these pathways require non-flavin-containing FMNH2-dependent monoxygenases (DszC/DszA and SsuD, respectively). FMNH2 is provided from the freely diffusible FMNH2 pool in the cell, and is replenished by specific NAD(P)H:FMN oxidoreductases (DszD and SsuE). Overexpression of the DszD FMN reductase in a heterologous system increases the efficiency of DBT desulfurization but is detrimental to cell growth at high levels. Expression of the sulfonatase that cleaves aromatic sulfonates (surfactants, dyes) is accompanied by synthesis of a thiol-specific antioxidant protein, which may protect the cell from superoxide radicals generated by autoxidation of the reduced flavin. Effective application of DBT desulfurization in the biodesulfurization of crude oil, and of arylsulfonate desulfonation in bioremediation, may require optimization of both flavin reductase levels and antioxidant protection systems within the cell.  相似文献   

7.
Flavin reductase is essential for the oxygenases involved in microbial dibenzothiophene (DBT) desulfurization. An enzyme of the thermophilic strain, Bacillus sp. DSM411, was selected to couple with DBT monooxygenase (DszC) from Rhodococcus erythropolis D-1. The flavin reductase was purified to homogeneity from Bacillus sp. DSM411, and the native enzyme was a monomer of Mr 16 kDa. Although the best substrates were flavin mononucleotide and NADH, the enzyme also used other flavin compounds and acted slightly on nitroaromatic compounds and NADPH. The purified enzyme coupled with DszC and had a ferric reductase activity. Among the flavin reductases so far characterized, the present enzyme is the most thermophilic and thermostable. The gene coded for a protein of 155 amino acids with a calculated mass of 17,325 Da. The enzyme was overproduced in Escherichia coli, and the specific activity in the crude extracts was about 440-fold higher than that of the wild-type strain, Bacillus sp. DSM411.  相似文献   

8.
Microbial desulfurization is potentially an alternative process to chemical desulfurization of fossil fuels and their refined products. The dibenzothiophene desulfurizing system of Rhodococcus erythropolis includes DszD which is an NADH-dependent FMN oxidoreductase with 192 residues that is responsible for supplying reducing equivalents in the form of FMNH2 to monooxygenases, DszA and DszC. We performed amino acid sequence comparisons and structural predictions based on the crystal structure of available pdb files for three flavin reductases PheA2, HpaCTt and HpaCSt with the closest structural homology to IGTS8 DszD. The Thr62 residue in DszD was substituted with Asn and Ala by site-directed single amino acid mutagenesis. Variants T62N and T62A showed 5 and 7 fold increase in activities based on the recombinant wild type DszD, respectively. This study revealed the critical role of position 62 in enzyme activity. These results represent the first experimental report on flavin reductase mutation in R. erythropolis and will pave the way for further optimization of the biodesulfurization process.  相似文献   

9.
Dibenzothiophene (DBT) in fossil fuels can be efficiently biodesulfurized by a thermophilic bacterium Mycobacterium goodii X7B. Flavin reductase DszD, which catalyzes the reduction of oxidated flavin by NAD(P)H, is indispensable for the biodesulfurization process. In this work, a flavin reductase DszD in M. goodii X7B was purified to homogeneity, and then its encoding gene dszD was amplified and expressed in Escherichia coli. DszD is a homodimer with each subunit binding one FMN as cofactor. The Km values for FMN and NADH of the purified recombinant DszD were determined to be 6.6 ± 0.3 μM and 77.9 ± 5.4 μM, respectively. The optimal temperature for DszD activity was 55 °C. DszD can use FMN or FAD as substrate to generate FMNH2 or FADH2 as product. DszD was coexpressed with DBT monooxygenase DszC, the enzyme catalyzing the first step of the biodesulfurization process. It was indicated that the coexpressed DszD could effectively enhance the DszC catalyzed DBT desulfurization reaction.  相似文献   

10.
Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support growth of bacteria at an expense of DBT. These combined results suggest that Chelatococcus sp. prefers sulfur-specific extended 4S pathway for deep-desulphurization which may have an advantage for its intended future application as a promising biodesulfurizing agent.  相似文献   

11.
Two mutants of the dibenzothiophene-desulfurizing Rhodococcus erythropolis KA2-5-1, strains MS51 and MS316, which express a high level of desulfurizing activity in the presence of sulfate, were isolated using the transposome technique. The level of dibenzothiophene-desulfurization by cell-free extracts prepared from mutants MS51 and MS316 grown on sulfate was about five-fold higher than that by cell-free extracts of the wild-type. This result was consistent with results of Western-blot analysis using antisera specific for DszA, DszB and DszC, the enzymes involved in the desulfurization of dibenzothiophene. Gene analysis of the mutants revealed that the same gene was disrupted in mutants MS51 and MS316 and that the transposon-inserted gene in these strains was the gene for cystathionine beta-synthase, cbs. The cbs mutants also expressed high levels of Dsz enzymes when methionine was used as the sole source of sulfur.  相似文献   

12.
To investigate the flavin utilization by dibenzothiophene monooxygenase (DszC), DszC of a desulfurizing bacterium Mycobacterium goodii X7B was purified from the recombinant Escherichia coli. It was shown to be able to utilize either FMNH2 or FADH2 when coupled with a flavin reductase that reduces either FMN or FAD. Sequence analysis indicated that DszC was similar to the C2 component of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii, which can use both FADH2 and FMNH2 as substrates. Both flavins at high concentrations could inhibit the activity of DszC due to autocatalytic oxidation of reduced flavins. The results suggest that DszC should be reclassified as an FMNH2 and FADH2 both-utilizing monooxygenase component and the flavins should be controlled at properly reduced levels to obtain optimal biodesulfurization results.  相似文献   

13.
Dibenzothiophene (DBT) monooxygenase (DszC)catalysis,the first and also the key step in the microbial DBT desulfurization,is the conversion of DBT to DBT sulfone (DBTO2).In this study,dszC of a DBT-desulfiaizing bacterium Rhodococcus sp.DS-3 was cloned by PCR.The sequence cloned was 99% homologous to Rhodococcus erythropolis IGTS8 that was reported in the Genebank.The gene dszC could be overexpressed effectively after being inserted into plasmid pET28a and transformed into E.coli BL21 strain.The expression amount of DszC was about 20% of total supernatant at low temperature.The soluble DszC in the supematant was purified by Ni2+ chelating His-Tag resin column and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to electronics purity.Only one band was detected by Western-blotting,which is for the antibody released in mouse against purified DszC in the expression product of BL21 (DE3,paC5) and Rhodococcus sp.DS-3.The activity of purified DszC was 0.36 U.DszC can utilize the organic compound such as DBT and methyl-DBT,hut not DBT derivates such as DBF,which has no sulfur or inorganic sulfur.  相似文献   

14.
Rhodococcus erythropolis has been studied widely for potential applications in biodesulfurization. Previous works have been largely experimental with an emphasis on the characterization and genetic engineering of desulfurizing strains for improved biocatalysis. A systems modeling approach that can complement these experimental efforts by providing useful insights into the complex interactions of desulfurization reactions with various other metabolic activities is absent in the literature. In this work, we report the first attempt at reconstructing a flux-based model to analyze sulfur utilization by R. erythropolis. The model includes the 4S pathway for dibenzothiophene (DBT) desulfurization. It predicts closely the growth rates reported by two independent experimental studies, and gives a clear and comprehensive picture of the pathways that assimilate the sulfur from DBT into biomass. In addition, it successfully elucidates that sulfate promotes higher cell growth than DBT and its presence in the medium reduces DBT desulfurization rates. A study using eight carbon sources suggests that ethanol and lactate yield higher cell growth and desulfurization rates than citrate, fructose, glucose, gluconate, glutamate, and glycerol.  相似文献   

15.
A benzothiophene (BT) and dibenzothiophene (DBT) monooxygenase (TdsC), which catalyzes the oxidation of the sulfur atoms in BT and DBT molecules, was purified from Paenibacillus sp. strain A11-2. The molecular mass of the purified enzyme and its subunit were determined to be 200 kDa and 43 kDa by gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis, respectively, indicating a tetrameric structure. The N-terminal amino acid sequence of the purified TdsC completely matched the amino acid sequence deduced from the nucleotide sequence of the tdsC gene reported previously [Ishii et al. (2000) Biophys Biochem Res Commun 270:81-88]. The optimal temperature and pH for the TdsC reaction were 65 degrees C and pH 9, respectively. TdsC required NADH, FMN and TdsD, a NADH-dependent FMN oxidoreductase, for its activity, as was observed for TdsA. FAD, lumiflavin and/or NADPH had some effect on the maintenance of TdsC activity. A comparison of the substrate specificity of TdsC and DszC, the homologous monooxygenase purified from Rhodococcus erythropolis strain KA2-5-1, demonstrated a contrasting pattern towards alkylated DBTs and BTs.  相似文献   

16.
Ferric iron reductase was purified from magnetotactic bacterium Magnetospirillum (formerly Aquaspirillum) magnetotacticum (ATCC 31632) to an electrophoretically homogeneous state. The enzyme was loosely bound on the cytoplasmic face of the cytoplasmic membrane and was found more frequently in magnetic cells than in nonmagnetic cells. The molecular mass of the purified enzyme was calculated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be about 36 kDa, almost the same as that calibrated by gel filtration analysis. The enzyme required NADH and flavin mononucleotide (FMN) as optimal electron donor and cofactor, respectively, and the activity was strongly inhibited by Zn2+ acting as a partial mixed-type inhibitor. The Km values for NADH and FMN were 4.3 and 0. 035 microM, respectively, and the Ki values for Zn2+ were 19.2 and 23.9 microM for NADH and FMN, respectively. When the bacterium was grown in the presence of ZnSO4, the magnetosome number in the cells and the ferric iron reductase activity declined in parallel with an increase in the ZnSO4 concentration of the medium, suggesting that the ferric iron reductase purified in the present study may participate in magnetite synthesis.  相似文献   

17.
The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in “4S” metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280–295, between α9 and α10). They are named “open”' and “closed” state respectively, and might show the status of the free and ligand‐bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a‐(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a‐(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a‐(hydro)xyflavin. Site‐directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate‐binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity. Proteins 2014; 82:1708–1720. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

19.
Russell TR  Tu SC 《Biochemistry》2004,43(40):12887-12893
Homodimeric FRD(Aa) Class I is an NADH:flavin oxidoreductase from Aminobacter aminovorans. It is unusual because it contains an FMN cofactor but utilizes a sequential-ordered kinetic mechanism. Because little is known about NADH-specific flavin reductases in general and FRD(Aa) in particular, this study aimed to further explore FRD(Aa) by identifying the functionalities of a key residue. A sequence alignment of FRD(Aa) with several known and hypothetical flavoproteins in the same subfamily reveals within the flavin reductase active-site domain a conserved GDH motif, which is believed to be responsible for the enzyme and NADH interaction. Mutation of the His140 in this GDH motif to alanine reduced FRD(Aa) activity to <3%. An ultrafiltration assay and fluorescence quenching demonstrated that H140A FRD(Aa) binds FMN in the same 1:1 stoichiometric ratio as the wild-type enzyme, but with slightly weakened affinity (K(d) = 0.9 microM). Anaerobic stopped-flow studies were carried out using both the native and mutated FRD(Aa). Similar to the native enzyme, H140A FRD(Aa) was also able to reduce the FMN cofactor by NADH although much less efficiently. Kinetic analysis of anaerobic reduction measurements indicated that the His140 residue of FRD(Aa) was essential to NADH binding, as well as important for the reduction of the FMN cofactor. For the native enzyme, the cofactor reduction was followed by at least one slower step in the catalytic pathway.  相似文献   

20.
Conditions for the reversible dissociation of flavin mononucleotide (FMN) from the membrane-bound mitochondrial NADH:ubiquinone oxidoreductase (complex I) are described. The catalytic activities of the enzyme, i.e. rotenone-insensitive NADH:hexaammineruthenium III reductase and rotenone-sensitive NADH:quinone reductase decline when bovine heart submitochondrial particles are incubated with NADH in the presence of rotenone or cyanide at alkaline pH. FMN protects and fully restores the NADH-induced inactivation whereas riboflavin and flavin adenine dinucleotide do not. The data show that the reduction of complex I significantly weakens the binding of FMN to protein thus resulting in its dissociation when the concentration of holoenzyme is comparable with K(d ( approximately 10(-8)M at pH 10.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号