首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,4-Diaminotoluene (2,4-DAT) is a liver carcinogen in rats and mice whereas 2,6-DAT is not. Both are genotoxic in vitro. Tests for mutations in transgenic mice, unscheduled DNA synthesis (UDS), DNA damage and enhancement of initiated foci in vivo have shown some discrimination between these two analogues, but only after oral administration. 1- and 2-nitronaphthalene (1- and 2-NNT) are also both genotoxic in vitro, although, unlike 2,4- and 2,6-DAT, they do not require metabolic activation. There is some evidence that 2-NNT may be able to induce liver and bladder tumours, and there is some evidence that 1-NNT is not carcinogenic to rats or mice, but none of the data are convincing. When tested for induction of LacZ mutations in Muta Mouse after topical exposure (human occupational exposure route) at their maximum tolerated doses, 2,4-DAT induced a positive response in liver and a marginal response in kidney, whereas 2,6-DAT was negative. 2-NNT also induced a positive mutagenic response in liver, and a marginal response in bladder, whereas 1-NNT was negative. Neither 2,4- nor 2,6-DAT induced mutations at the site of application (skin) as might be expected for chemicals requiring activation by liver enzymes. 2-NNT, which is a direct-acting mutagen in vitro, gave a marginal response for induced mutation at the site of application, but 1-NNT was negative. This study shows that investigation of induction of LacZ mutations after topical application in vivo can provide useful data to help discriminate potentially carcinogenic from non-carcinogenic chemicals that are mutagenic in vitro. Robust carcinogenicity data are needed to determine whether 2-NNT can induce tumours in the liver and bladder.  相似文献   

2.
The alkaline single cell gel electrophoresis (comet) assay was used to assess in vitro and in vivo genotoxicity of etoposide, a topoisomerase II inhibitor known to induce DNA strand breaks, and chlorothalonil, a fungicide widely used in agriculture. For in vivo studies, rats were sacrificed at various times after treatment and the induction of DNA strand breaks was assessed in whole blood, bone marrow, thymus, liver, kidney cortex and in the distal part of the intestine. One hour after injection, etoposide induced DNA damage in all organs studied except kidney, especially in bone marrow, thymus (presence of HDC) and whole blood. As observed during in vitro comet assay on Chinese hamster ovary (CHO) cells, dose- and time-dependent DNA effects occurred in vivo with a complete disappearance of damage 24 h after administration. Even though apoptotic cells were detected in vitro 48 h after cell exposure to etoposide, such a result was not found in vivo. After chlorothalonil treatment, no DNA strand breaks were observed in rat organs whereas a clear dose-related DNA damage was observed in vitro. The discrepancy between in vivo and in vitro models could be explained by metabolic and mechanistic reasons. Our results show that the in vivo comet assay is able to detect the target organs of etoposide and suggest that chlorothalonil is devoid of appreciable in vivo genotoxic activity under the protocol used.  相似文献   

3.
In kidney-cortex slices from rats fed on 2.0 mg of ochratoxin A/kg per day for 2 days, gluconeogenesis from pyruvate is decreased by 26%, and renal phosphoenolpyruvate carboxykinase activity is lowered by about 55%. Gluconeogenesis from 10 mM-lactate or 20 mM-malate or -glutamine is also significantly decreased. Hepatic phosphoenolpyruvate carboxykinase is unchanged or increased, and hexokinase activity in kidney and liver remains unaffected. We conclude that ochratoxin A in vivo is an inhibitor of renal phosphoenolpyruvate carboxykinase activity, which is responsible, at least in part, for the block in renal gluconeogenesis.  相似文献   

4.
The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.  相似文献   

5.
The main target organ of the mycotoxin ochratoxin A (OTA) in mammals is the kidney but OTA has also been shown to be hepatotoxic in rats and to induce tumors in mouse liver. Even at very low concentrations, OTA causes perturbations of cellular signaling pathways as well as enhanced apoptosis. OTA has been extensively studied in kidney cell systems. Since this substance also affects liver health, we focused our work on apoptosis-related events induced by OTA in primary rat hepatocytes. We performed pathway-specific polymerase chain reaction arrays to assess the expression of genes involved in apoptosis. Treatment with 1 μM OTA for 24 h caused marked changes in apoptosis-related gene expression. Genes as apaf1, bad, caspase 7, polb (DNA polymerase beta, performs base excision repair), and p53, which are marker genes for DNA damage, were upregulated. FAS and faslg were also markedly induced by treatment with OTA. Treatment of hepatocytes with OTA led to a concentration-dependent inhibition of protein biosynthesis. Apoptosis-inducing factor was released from mitochondria following OTA treatment; the mycotoxin induced the activity of caspases 8, 9, and 3/7 and caused chromatin condensation and fragmentation. Caspase inhibition led to a significant but not complete reduction of OTA-induced apoptosis. Our data suggest that not only OTA leads to p53-dependent apoptosis in rat hepatocytes but it also hints to other mechanisms, independent of caspase activation or protein biosynthesis, being involved.  相似文献   

6.
The organ specificity of tris(2,3-dibromopropyl)phosphate(Tris-BP)-induced DNA damage was investigated in the rat 2 h after a single i.p. injection of 350 mumol/kg. Extensive DNA damage, measured with the alkaline elution method, was found in the kidney, liver and small intestine. Less, but significant DNA damage was detected in the brain, lung, spleen, large intestine and testis. The role of different pathways in the activation of Tris-BP to DNA damaging products was studied in isolated liver and testicular cells. Concentrations as low as 2.5-5 microM Tris-BP caused DNA damage in the hepatocytes, whereas an approximately 10-fold higher concentration was needed in testicular cells to produce a similar amount of DNA damage. Depletion of GSH by diethyl maleate (DEM) did not affect the extent of DNA damage caused by Tris-BP in the liver cells, but blocked the genotoxic effect in testicular cells. Two specifically deuterated Tris-BP analogs, C3D2-Tris-BP and C2D1-Tris-BP, were significantly less potent in causing DNA damage than the protio compound in isolated liver cells and were somewhat less potent in testicular cells. The major urinary metabolite of Tris-BP, bis(2,3-dibromopropyl)phosphate (Bis-BP), was less potent than Tris-BP in causing kidney DNA damage after in vivo exposure. Furthermore, Bis-BP induced substantially less DNA damage in isolated liver and testicular cells. Similar to the effect of DEM on the DNA damage caused by Tris-BP, the DNA damage caused by Bis-BP could be decreased by DEM-pretreatment in testicular cells but not in liver cells. The present study shows that Tris-BP is a potent multiorgan genotoxic agent in vivo. The in vitro data indicate that P-450 mediated metabolism of Tris-BP is more important than activation by glutathione S-transferases of Tris-BP in liver cells, whereas the latter activation pathway seems to be most important in testicular cells.  相似文献   

7.
Lin W  Wei X  Xue H  Kelimu M  Tao R  Song Y  Zhou Z 《Mutation research》2000,466(2):187-195
Nitric oxide (NO) as well as its donors has been shown to generate mutation and DNA damage in in vitro assays. The objective of this study was to identify that DNA single-strand breaks (SSBs) could be elicited by NO, not only in vitro but also in vivo. The alkaline single-cell gel electrophoresis (SCGE) was performed to examine the DNA damage in g12 cells and the cells isolated from the organs of mice exposed to sodium nitroprusside (SNP). A modified method, in which neither collagenase nor trypsin was necessary, was used to prepare the single-cell suspension isolated from organs of mice. Results showed that the exposure of g12 cells to 0.13-0.5 micromol/ml SNP with S9 for 1 h induced a concentration-dependent increase in DNA SSBs in g12 cells. The significant increase in DNA migration and comet frequency has appeared in the cells isolated from the spleen, thymus, and peritoneal macrophages of mice after injecting i.p. SNP in the dosage range of 0.67-6.0 mg/kg b.wt for 1 h. However, no obvious increase in DNA strand breaks was observed in the cells isolated from the liver, kidney, lung, brain and heart obtained from the same treated mice. These results suggested that DNA SSBs could be induced by NO in some cells both in vivo and in vitro. There were organ differences in sensitivity in the mice exposed to NO. Spleen, thymus, and macrophages might be the important targets of NO.  相似文献   

8.
Despite the fact that the use of antibiotics is increasing worldwide, it is clear that antibiotics can lead to oxidative stress. This is the first study to make a comparison of the impact of frequently prescribed antibiotics, including amoxicillin, gentamicin, and cefazolin sodium, on the gene, protein, and activity of glutathione reductase (GR), which is one of the primary antioxidant enzymes, in mouse liver and kidney tissues. First, the GR enzyme was purified by the 2′,5′‐ADP Sepharose 4B affinity chromatography with a specific activity of 84.615 EU/mg protein and 9.63 EU/mg protein from the mouse liver and kidney, respectively. The in vitro inhibitory effects of the antibiotics in question was determined. While cefazolin sodium did not exhibit any inhibitory effect, gentamicin and amoxicillin inhibited GR activity in both tissues. Furthermore, the in vivo effects of these drugs were investigated, and amoxicillin and cefazolin sodium‐inhibited GR activity in both liver and kidney tissues, while gentamicin did not have any effect on the kidney. Besides, while gentamicin downregulated and cefazolin sodium upregulated Gr gene expression, amoxicillin did not alter it. Protein expression was only affected by the administration of cefazolin sodium in the kidney. This study is important as it demonstrates that while amoxicillin and gentamicin showed parallel effects on the GR activity in liver and kidney tissues both in vitro and in vivo, cefazolin sodium had a very strong effect on hepatic and renal GR in vivo. Furthermore, the antibiotics used in this study induced oxidative stress in both tissues.  相似文献   

9.
Alpha-lipoic acid (LA) protected plasmid pBR 322 DNA, under in vitro conditions from gamma radiation induced strand breaks as evidenced by the prevention of the loss of supercoiled covalently closed circular form upon irradiation. It also protected the membrane lipids of liver homogenates from the oxidative damages. Whole body exposure of mice to gamma-radiation resulted in damage to cellular DNA in various tissues and administration of LA prior to the radiation exposure prevented the radiation induced DNA damage as assessed by alkaline comet assay. Administration of LA to mice prior to the radiation exposure also prevented induction of chromosomal damages in bone marrow cells and formation of micronuclei in blood reticulocytes. Thus taken together, LA a normal cellular constituent could be used as a radioprotector against whole body radiation exposure scenarios.  相似文献   

10.
In cell cultures of Madin Darby canine kidney (MDCK) cells, the mycotoxin ochratoxin A (OTA) induced single strand breaks (ssb) in a concentration dependent manner detected with the single cell gel electrophoresis (Comet assay). When an external metabolizing enzyme system (S9-mix from rat liver) was added, this genotoxic effect was significantly stronger. By addition of methotrexate (MT), a substrate of the hepatic organic anion transporter, the effect of OTA can be completely blocked at concentrations >100 μM methotrexate.When DNA repair was inhibited by addition of cytosine arabinose (araC) and hydroxyurea (HU), the tail length in the Comet assay increased dramatically and all treated cells showed ssb. A further culture of the damaged cells in the absence of any supplement resulted in a complete repair of the damaged DNA within three hours.Compared with MDCK cells, primary cultured porcine urinary bladder epithelial cells (PUBECs) showed weaker effects in the Comet assay if treated with OTA. The presence of S9-mix did not significantly enhance the response. Methotrexate only partially reduced the OTA-induced effects, because in PUBECs methotrexate induced ssb at high concentrations. If DNA repair was inhibited, also in PUBECs clearly more ssb were induced by OTA, an effect which was reversible.These results demonstrate that OTA induces single strand breaks in vitro. The damaged DNA can be repaired more effectively in primary cultured epithelial cells (PUBECs) compared to cells of a cell line (MDCK cells). By competitive inhibition of OTA uptake, DNA damage can be prevented with suitable substrates.  相似文献   

11.
12.
The present study was designed to evaluate the in vitro and in vivo ameliorative antioxidant potential of secoisolariciresinol diglucoside (SDG). In vitro antioxidant activity of synthetic SDG was carried out using DPPH, reducing power potency, and DNA protection assays. Wistar albino rats weighing 180–220 g were used for in vivo studies and liver damage was induced in the experimental animals by a single intraperitoneal (I.P.) injection of CCl4 (2 g/kg b.w.). Intoxicated animals were treated orally with synthetic SDG at (12.5 and 25 mg/kg b.w.) and Silymarin (25 mg/kg) for 14 consecutive days. The levels of catalase (CAT), superoxide dismutase (SOD), peroxidase (POX), and lipid peroxidase (LPO) were measured in liver and kidney homogenates. The synthetic SDG exerts high in vitro antioxidant potency as it could scavenge DPPH at a IC50 value of 78.9 μg/ml and has dose-dependent reducing power potency and protected DNA at 0.5 mg/ml concentration. Oral administration of synthetic SDG at 12.5 and 25 mg/kg b.w. showed significant protection compared to Silymarin (25 mg/kg) and the activities of CAT, SOD, and POX were markedly increased (P < 0.05), whereas LPO significantly decreased (P < 0.001) in a dose-dependent manner in liver and kidney in both pre- and post-treatment groups when compared to toxin-treated group. The results of in vitro and in vivo investigations revealed that synthetic SDG at 25 mg/kg b.w. is associated with beneficial changes in hepatic enzyme activities and thereby plays a key role in the prevention of oxidative damage in immunologic system.  相似文献   

13.
A review of the genotoxicity of ethylbenzene   总被引:2,自引:0,他引:2  
Ethylbenzene is an important industrial chemical that has recently been classified as a possible human carcinogen (IARC class 2B). It induces tumours in rats and mice, but neither the relevance of these tumours to humans nor their mechanism of induction is clear. Considering the carcinogenic potential of ethylbenzene, it is of interest to determine whether there is sufficient data to characterize its mode of action as either genotoxic or non-genotoxic. A review of the currently available genotoxicity data is assessed. Ethylbenzene is not a bacterial mutagen, does not induce gene conversion or mutations in yeast and does not induce sister chromatid exchanges in CHO cells. Ethylbenzene is not clastogenic in CHO or rat liver cell lines but was reported to induce micronuclei in SHE cells in vitro. No evidence for genotoxicity has been seen in humans exposed to relatively high levels of ethylbenzene. Mouse lymphoma gene mutation studies produced a mixed series of responses that have proved difficult to interpret. An increase in morphological transformation of SHE cells was also found. Results from a more relevant series of in vivo genotoxicity studies, including acute and sub-chronic micronucleus tests and the mouse liver UDS assay, indicate a lack of in vivo genotoxic activity. The composite set of results from both in vitro and in vivo tests known to assess direct damage to DNA have been predominantly negative in the absence of excessive toxicity. The available data from the standard battery of genotoxicity assays do not support a genotoxic mechanism for ethylbenzene-induced kidney, liver or lung tumors in rats and mice.  相似文献   

14.
15.
1. Rat liver microsomes isolated at 6 and 12 h of poisoning with 3 x LD50 (0.3 microgram/100 g body wt.) of modeccin, the toxin of Adenia digitata, have a decreased capacity of protein synthesis in vitro. 2. A similar decrease of protein synthesis is observed with polysomes at 6 h of poisoning. Experiments with recombined ribosomal subunits demonstrate that this is due to inactivation of the 60 S ribosomal subunit. 3. At 6 h of poisoning there is a marked vesiculation and degranulation of the hepatocyte rough endoplasmic reticulum, which is completely fragmented at 24 h of poisoning. Hepatocyte mitochondria are swollen at 6 h and shrunk at 24 h of poisoning. 4. It is concluded that modeccin penetrates inside hepatocytes in vivo, and damages ribosomes in the same manner as it does in vitro. However, mitochondrial damage indicates that ribosomes may not be the only target of modeccin in vivo.  相似文献   

16.
The nature of DNA damage induced by N-methyl-N-nitrosourethane (NMUT) in the guinea pig pancreas, both in vitro and in vivo, and subsequent repair was investigated by alkaline sucrose density gradient analysis, using a non-radioactive fluorimetric procedure for DNA determination in gradient fractions. In vitro exposure of pancreatic slices to 20 mM NMUT for 30 min damaged DNA to less than 2.24 . 10(6) dalton fragments. However, incubation of NMUT-treated slices for 3 h in a fresh medium resulted in the repair of most of DNA damage, as indicated by the conversion of low molecular weight DNA fragments into heavy DNA of molecular weight comparable to DNA from control slices. Additionally, a single administration of NMUT (30 mg/kg, i.p.) to guinea pigs induced extensive DNA damage, to less than 2.24 . 10(6) dalton fragments in the pancreas within 4 h; similar DNA damage was observed in the liver. However, in the pancreas and liver of guinea pigs sacrificed at increasing intervals after NMUT administration, there was a gradual conversion of shortened DNA fragments to heavy high molecular weight DNA, indicating repair of DNA damage. It appears that most of DNA damage in the pancreas and liver was repaired by 14 and 7 days, respectively, following NMUT administration.  相似文献   

17.
Protection of DNA from gamma-radiation induced strand breaks by Epicatechin   总被引:2,自引:0,他引:2  
Epicatechin (EC), a polyphenolic antioxidant compound found in tea, apples and chocolate offered protection to DNA against ionizing radiation induced damages. Under in vitro conditions of radiation exposure, plasmid pBR322 DNA was protected by EC in a concentration dependent manner. The dose modifying factor for 0.2 mM EC for 50% protection of the plasmid DNA was found to be 6.0. EC when administered to mice 1 h prior to exposure to 4 Gy gamma-radiation protected cellular DNA against radiation-induced strand breaks in peripheral blood leukocytes, as revealed in alkaline comet assay studies. Thus, EC was found to protect DNA from gamma-radiation indiced strand breaks under in vitro as well as in vivo conditions of radiation exposure.  相似文献   

18.
The extent of DNA fragmentation induced in lung, kidney, and liver of mice injected with the chemical carcinogens 4-nitroquinoline 1-oxide (4NQO), dimethylnitrosamine (DMN) and the noncarcinogenic 4-aminoquinoline 1-oxide (4AQO) was estimated by the alkaline sucrose gradient technique. A floating of minced lung tissue pieces in the alkaline lysing solution on top of the gradients afforded a gentle method of lung DNA extraction. This technique minimized mechanical shearing of lung DNA and permitted comparisons to be made with liver and kidney DNA sedimentation patterns. The extent of DNA damage induced by 4NQO followed the order: lung, kidney, liver, while that induced by DMN followed the order: liver, kidney, lung. The sites of greatest DNA damage appeared to correlate with sites of high levels of DNA repair synthesis and the sites of tumor induction. No DNA damage was induced by the noncarcinogenic 4-aminoquinoline 1-oxide (4AQO).  相似文献   

19.
Genotoxic effects of estrogens   总被引:10,自引:0,他引:10  
J G Liehr 《Mutation research》1990,238(3):269-276
Estrogens are associated with several cancers in humans and are known to induce tumors in rodents. In this review a mechanism of carcinogenesis by estrogens is discussed which features the following key events: (1) Steroid estrogens are metabolized by estrogen 2- and 4-hydroxylases to catecholestrogens. Target organs of estrogen-induced carcinogenesis, hamster kidney or mouse uterus, contain high levels of estrogen 4-hydroxylase activity. Since the methylation of 4-hydroxyestradiol by catechol-O-methyltransferase is inhibited by 2-hydroxyestradiol, it is proposed that a build up of 4-hydroxyestrogens precedes estrogen-induced cancer. (2) The catecholestrogen or diethylstilbestrol (DES) are oxidized to semiquinones and quinones by the peroxidatic activity of cytochrome P-450. The quinones are proposed to be (the) reactive intermediates of estrogen metabolism. (3) The quinones may be reduced to catecholestrogens and DES and redox cycling may ensue. Redox cycling of estrogens has been shown to generate free radicals which may react to form the organic hydroperoxides needed as cofactors for oxidation to quinones. (4) The quinone metabolites of catechol estrogens and of DES bind covalently to DNA in vitro whereas DNA binding in vivo has only been examined for DES. When DES is administered to hamsters, the resulting DES-DNA adduct profile in liver, kidney, or other organs closely matches that of DES quinone-DNA adducts in vitro. In vitro, DES-DNA adducts are chemically unstable and are generated in incubations with organic hydroperoxide as cofactor. It is proposed that the instability of adducts and the lower sensitivity of previous assay methods contributed to the reported failures to detect adducts. Steroid estrogen-DNA adducts in vivo are currently under investigation. (5) Tumors are postulated to arise in cells rapidly proliferating due to the growth stimulus provided by the estrogenic activity of the primary estrogen or of hormonally potent metabolites such as 4-hydroxyestradiol. The covalent modification of DNA in these cells is temporary because of the chemical instability of adducts and will result in altered genetic messages in daughter cells, whereas in non-proliferating cells there may be no lasting genetic damage. The sequence of events described above is a plausible mechanism for tumor initiation by estrogens and is partially substantiated by experimental evidence obtained in vitro and/or in vivo.  相似文献   

20.
Hydroxyochratoxin A was isolated and identified from the urine of rats after injection with ochratoxin A. By incubating ochratoxin A with rat liver microsomes and reduced nicotinamide adenine dinucleotide phosphate, one major (90%) and two minor metabolites, more polar than ochratoxin A, were formed. Thin-layer chromatography revealed that the major metabolite had Rf values identical to those of hydroxyochratoxin A in six different solvent systems. Formation of the metabolites in vitro was inhibited by carbon monoxide and by metyrapone, and the rate of formation increased after pretreatment of the rats with phenobarbital. A type I spectrum appeared upon binding of ochratoxin A to microsomes with a spectral dissociation constant (Ks) of 37.6 microM. These findings strongly suggest the involvement of a cytochrome P-450 in the hydroxylation of ochratoxin A by rat liver microsomes. Apparent Km and Vmax values for the formation of hydroxyochratoxin A were determined to 50 microM and 5.5 nmol/mg of protein per h, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号