首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allogeneic bone marrow transplantation (BMT) has been increasingly used for the treatment of both neoplastic and non-neoplastic disorders. However, serious obstacles currently limit the efficacy and thus more extensive use of BMT. These obstacles include: graft-versus-host disease (GVHD), relapse from the original tumor, and susceptibility of patients to opportunistic infections due to the immunosuppressive effects of the conditioning regimen.Overcoming these obstacles is complicated by dual outcome of existing regimens; attempts to reduce GVHD by depleting T cells from the graft, result in increased rates of tumor relapse and failure of engraftment. On the other hand, efforts to increase graft-versus-tumor (GVT) effects of the transplant also promote GVHD. In this review, the use of natural killer (NK) cells to overcome some of these obstacles of allogeneic BMT is evaluated. Adoptive immunotherapy using NK cells after allogeneic BMT has several potential advantages. First, NK cells can promote hematopoiesis and therefore engraftment by production of hematopoietic growth factors. Second, NK cells have been shown to prevent the incidence and severity of GVHD. This has been shown to be at least partially due to TGF-beta, an immunosuppressive cytokine. Third, NK cells have been shown to augment numerous anti-tumor effects in animals after BMT suggesting a vital role of NK cells in mediating GVT effects. Finally, NK cells have been demonstrated to affect B cell recovery and function in mice. Therefore, understanding the mechanisms of beneficial effects of NK cells after BMT may lead to significant increases in the efficacy of this procedure.  相似文献   

2.
Purified NK cells were obtained from mice with severe combined immune deficiency and were activated with human IL-2 (hrIL-2) in vitro to determine if, once activated, these cells could be transferred with compatible bone marrow cells (BMC) and promote marrow engraftment in irradiated allogeneic recipients. After culture with hrIL-2, these cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. These activated NK cells were then adoptively transferred with the donor BMC and rhIL-2 into lethally irradiated allogeneic hosts. The addition of NK cells with the BMC allowed for more rapid hematopoietic engraftment as determined through short term studies, and greater donor-derived chimerism with accelerated reconstitution of the B cell population as determined with long term analysis. No evidence of graft-vs-host disease was detected in the recipients receiving the activated NK cells with allogeneic T cell replete BMC and hrIL-2. The mechanism by which the transferred NK cells improved BMC engraftment was at least partly through the abrogation of the host effector cell's ability to mediate resistance to the marrow graft. Thus, the administration of donor-type activated NK cells with BMC and hrIL-2 may significantly augment hematopoietic engraftment and immune reconstitution in the clinical setting of allogeneic BMT without giving rise to graft-vs-host disease.  相似文献   

3.
In vivo use of rIL-2 autologous BMT may be the means of reproducing a kind of "adoptive immunotherapy" from grafted cells after allogeneic BMT. This approach may enhance the spontaneous generation of cytotoxic T-cells and NK cells which are presumably involved in this immunotherapy. Potential risks of such an approach would be to increase the usual toxicity of rIL-2 and to jeopardize the hemopoietic reconstitution. To determine the feasibility of this approach we have treated 19 poor prognosis patients with a succession of autologous BMT followed 78 +/- 12 days later by a continuous infusion of rIL-2. Eighteen million international units (IU) per m2 per day of Proleukine (CETUS, Amsterdam, The Netherlands) were administrated over 6 or 12 days. No patient died of the procedure. Clinical toxicity related to rIL-2 was not increased. Hemopoietic toxicity, significant both for platelets and granulocytes, was transient. Immune stimulation was dramatic for lymphocytes and subpopulations (CD3+ and NK cells) and for cytolytic functions (NK and LAK activity). This trial establishes the feasibility of administration of high doses of rIL-2, 2 months after autologous BMT. In this setting a 6 day period of continuous infusion of 18 million per m2 per day of Proleukine appears to be a regularly tolerable dosage conducting to a major immune activation and invites further studies to determine the clinical impact of such an approach.  相似文献   

4.
The development of methods of avoiding graft-versus-host disease (GVHD) while retaining the alloengraftment-promoting and anti-leukemic effects of allogeneic T cells is a major goal of research in bone marrow transplantation (BMT). We have recently obtained evidence suggesting that natural suppressor (NS) cells derived from T cell-depleted (TCD) syngeneic marrow can protect against GVHD while permitting alloengraftment. We have now attempted to enrich and then propagate NS cells in vitro, with the goal of obtaining an enhanced anti-GVHD effect by adoptive transfer in vivo. Two long-term cell lines were generated culturing BMC depleted of Mac1-positive cells and of Mac1-positive plus Thy1-positive cells in high concentrations of IL-2. Both cell lines showed anti-GVHD effects when administered along with a GVHD-producing inoculum, while permitting complete allogeneic reconstitution. A clone derived from Mac1-depleted BMC protected completely against a more chronic pattern of GVHD. These cell lines demonstrated suppressive activity in vitro, cytolytic activity against a broad range of natural killer (NK)-sensitive and NK-resistant targets, and a novel cell surface phenotype, with characteristics of both alpha beta-TcR-bearing T cells and of NK cells. In some respects, these cells resemble LAK cells and differ from fresh NS cells, and from the cloned NS cells derived from spleens of total lymphoid irradiation (TLI)-treated mice and neonatal mice. To our knowledge, this is the first detailed phenotypic analysis of cell lines with in vivo anti-GVHD activity. If applicability can be demonstrated in large animal models, the ability to use bone marrow as a source of such protective cell lines might also have potential utility in clinical BMT.  相似文献   

5.
Reducing the graft-vs-host disease (GVHD)-promoting capacity of allogeneic T cells while maintaining alloengraftment and graft-vs-leukemia effects remains an important but elusive goal in clinical bone marrow transplantation (BMT). We have recently demonstrated that a short course of high dose IL-2 administered at the time of BMT has a powerful protective effect against GVHD mortality in mice. This short course of IL-2 is able to protect mice from both acute and chronic GVHD without sacrificing alloengraftment or graft-vs-leukemia effects of allogeneic T cells. Because the early administration of IL-2 seems to be crucial for this effect, we have studied the early lymphoid repopulation events after lethal irradiation and allogeneic BMT. These studies show that there are consistent delays in splenic repopulation by allogeneic cells after BMT in IL-2-treated animals compared with their untreated cohorts. Even greater percent reductions were seen in donor splenic T cell populations in the first few days after BMT in IL-2-treated animals. Splenic cells with the CD3+CD4-CD8- phenotype were increased in IL-2 treated animals at days 3 and 4 after BMT. This phenotype resembles that of bone marrow-derived cells which have been previously shown to inhibit GVHD, suggesting a possible mechanism for the protective effect of IL-2.  相似文献   

6.
Graft-versus-host disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal (GI) tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host Ags as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT. C57BL/6 (H2b; WT) and SP-A-deficient mice on a C57BL/6 background (H2b; SP-A(-/-)) mice underwent allogeneic or syngeneic BMT with cells from either C3HeB/FeJ (H2k; SP-A-deficient recipient mice that have undergone an allogeneic BMT [SP-A(-/-)alloBMT] or SP-A-sufficient recipient mice that have undergone an allogeneic BMT) or C57BL/6 (H2b; SP-A-deficient recipient mice that have undergone a syngeneic BMT or SP-A-sufficient recipient mice that have undergone a syngeneic BMT) mice. Five weeks post-BMT, mice were necropsied, and lung and GI tissue were analyzed. SP-A(-/-) alloBMT or SP-A-sufficient recipient mice that have undergone an allogeneic BMT had no significant differences in lung pathology; however, SP-A(-/-)alloBMT mice developed marked features of GI GVHD, including decreased body weight, increased tissue inflammation, and lymphocytic infiltration. SP-A(-/-)alloBMT mice also had increased colon expression of IL-1β, IL-6, TNF-α, and IFN-γ and as well as increased Th17 cells and diminished regulatory T cells. Our results demonstrate the first evidence, to our knowledge, of a critical role for SP-A in modulating GI GVHD. In these studies, we demonstrate that mice deficient in SP-A that have undergone an allogeneic BMT have a greater incidence of GI GVHD that is associated with increased Th17 cells and decreased regulatory T cells. The results of these studies demonstrate that SP-A protects against the development of GI GVHD and establishes a role for SP-A in regulating the immune response in the GI tract.  相似文献   

7.
Host NK cells can reject MHC-incompatible (allogeneic) bone marrow cells (BMCs), suggesting their effective role for graft-vs leukemia effects in the clinical setting of bone marrow transplantation. NK cell-mediated rejection of allogeneic BMCs is dependent on donor and recipient MHC alleles and other factors that are not yet fully characterized. Whereas the molecular mechanisms of allogeneic MHC recognition by NK receptors have been well studied in vitro, guidelines to understand NK cell allogeneic reactivity under the control of multiple genetic components in vivo remain less well understood. In this study, we use congenic mice to show that BMC rejection is regulated by haplotypes of the NK gene complex (NKC) that encodes multiple NK cell receptors. Most importantly, host MHC differences modulated the NKC effect. Moreover, the NKC allelic differences also affected the outcome of hybrid resistance whereby F1 hybrid mice reject parental BMCs. Therefore, these data indicate that NK cell alloreactivity in vivo is dependent on the combination of the host NKC and MHC haplotypes. These data suggest that the NK cell self-tolerance process dynamically modulates the NK cell alloreactivity in vivo.  相似文献   

8.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

9.
The effects of cyclosporin A (CsA) on the generation of NK cells were studied using syngeneic bone marrow transplanted mice subsequently treated with CsA (BMT/CsA mice). In contrast to a severe reduction in T cells that was reported previously, these mice exhibited a marked enhancement of splenic NK activity. The enhanced NK activity was mediated by NK1.1+, Thy-1- cells as assessed by antibody plus complement treatment, and was concomitant with an absolute increase in the numbers of NK1.1+ cells as assessed by flow cytometry. Because the depletion of host-derived, mature NK cells by injection of anti-asialo GM1 antibody before bone marrow reconstitution did not affect the enhancement of NK activity, CsA appeared to augment the generation of NK cells from bone marrow precursors. To investigate a possible relationship between the enhancement of NK activity and the maturational arrest of T cells in the thymus induced by CsA, mice were thymectomized, followed by irradiation, bone marrow reconstitution, and CsA treatment. These mice exhibited as strong enhancement of splenic NK activity as BMT/CsA mice, suggesting that the CsA-induced effect on NK cells is distinct from its effect on T cell development in the thymus. Taken together, these results are the first demonstration of the positive effect of CsA on NK cell generation and may be of importance in clinical bone marrow transplantation.  相似文献   

10.
Although the immune system has long been implicated in the control of cancer, evidence for specific and efficacious immune responses in human cancer has been lacking. In the case of chronic myelogenous leukemia (CML), either allogeneic bone marrow transplant (BMT) or interferon-alpha2b (IFN-alpha2b) therapy can result in complete remission, but the mechanism for prolonged disease control is unknown and may involve immune anti-leukemic responses. We previously demonstrated that PR1, a peptide derived from proteinase 3, is a potential target for CML-specific T cells. Here we studied 38 CML patients treated with allogeneic BMT, IFN- alpha2b or chemotherapy to look for PR1-specific T cells using PR1/HLA-A*0201 tetrameric complexes. There was a strong correlation between the presence of PR1-specific T cells and clinical responses after IFN-alpha and allogeneic BMT. This provides for the first time direct evidence of a role for T-cell immunity in clearing malignant cells.  相似文献   

11.
Graft-versus-host disease is a major complication after allogeneic bone marrow transplantation (BMT) caused by donor T cells. Immunosuppression mediated by CD4(+)CD25(+) regulatory T cells has been shown to ameliorate such pathogenic immune responses in animal models. Here, we summarize recent findings from experimental and clinical studies and propose a model for peripheral tolerance induction after BMT.  相似文献   

12.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

13.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

14.
The value of Y-body study for assessment of stromal cell engraftment was analyzed in 25 patients submitted to allogeneic bone marrow transplantation (BMT) (sex-matched in 12 cases and sex-mismatched in 13). The study was performed weekly on bone marrow smears until day +35, and the results were compared with those obtained in a control group of 20 patients submitted to autologous BMT (12 males and 8 females). Engraftment of haemopoietic cells was documented in all cases. The results of Y-body study on the recipients' fibroblast cells showed a pattern identical to that observed prior to BMT, independent of donor's sex. On the other hand, there were no differences between allogeneic and autologous BMT recipients in regard to percentage of Y-body positive cells. These results indicate that in allogeneic BMT there is no engraftment of the fibroblastic component of bone marrow stroma.  相似文献   

15.
The effect of linomide, an immunomodulatory drug, on natural killer (NK) cells and T cell-dependent immune responses following syngeneic or allogeneic bone marrow transplantation (BMT) was investigated in BALB/c mice inoculated with B-cell leukemia (BCL1). Linomide given in the drinking water had no impact on graft survival or graft versus leukemia (GVL) effects. Although linomide regulates anti-self reactivity in mice with experimental and spontaneous autoimmune disorders, the anti-tumor effects induced by allogeneic donor lymphocytes were not affected. This indicates that different mechanisms regulate anti-self and anti-leukemia effects. Alternatively, linomide might affect the homing of self-reactive lymphocytes to specific target organs in autoimmune disorders, although the homing process may not be relevant to the control of leukemia by alloreactive lymphocytes.  相似文献   

16.
Allogeneic bone marrow or blood stem call transplantation (BMT) represents an important therapeutic tool for the treatment of otherwise incurable malignant and non-malignant diseases. Until recently, autologous and allogeneic bone marrow and mobilized blood stem cell transplantations were used primarily to replace malignant, genetically abnormal or deficient immunohematopoietic compartments, and therefore highly toxic myeloablative regimens were considered to be mandatory for the effective eradication of all undesirable host-derived hematopoietic elements. Our preclinical and ongoing clinical studies have indicated that much more effective eradication of the host immunohematopoietic system cells can be achieved by adoptive allogeneic cell therapy with donor lymphocyte infusion following BMT. Thus, eradication of blood cancer cells, especially in patients with chronic myeloid leukemia and, less frequently, in patients with other hematologic malignancies, can frequently be accomplished despite the complete resistance of such tumor cells to maximally tolerated doses of chemoradiotherapy. Our cumulative experience has suggested that graft-vs.-leukemia (GVL) effects might be a useful tool for the eradication of otherwise resistant tumor cells of host origin. Based on the cumulative clinical experience and experimental data in animal models of human diseases, it appears that the induction of host-vs.-graft tolerance as an initial step may allow the durable engraftment of donor immunocompetent lymphocytes, which may be used for the induction of effective biologic warfare against host-type immunohematopoietic cells that need to be replaced, including malignant, genetically abnormal or self-reactive cells. Based on the aforementioned rationale, we speculated that the therapeutic benefit of BMT may be improved by using safer conditioning as part of the transplant procedure, with the goal being to induce host-vs.-graft tolerance to enable subsequent induction of GVL, possibly graft-vs.-tumor or even graft-vs.-autoimmunity effects, rather than attempting to eliminate host cells with hazardous myeloablative chemoradiotherapy. This hypothesis suggested that effective BMT procedures could be accomplished without lethal conditioning of the host, using new well-tolerated non-myeloablative regimens, thus possibly minimizing immediate and late side-effects related to the myeloablative procedures until recently considered to be mandatory for the conditioning of BMT recipients. Recent clinical data presented in this review suggest that effective BMT procedures may be accomplished with well-tolerated non-myeloablative stem cell transplantation (NST) regimens, with no major toxicity. Thus, new NST approaches may offer the feasibility of safer BMT procedures for a large spectrum of clinical indications in children and elderly individuals, without lower or upper age limits, while minimizing procedure-related toxicity and mortality. Taken together, our data suggest that high-dose chemotherapy and radiation therapy may be successfully replaced by a more effective biologic tool, alloreactive donor lymphocytes, thus setting the stage for innovative therapeutic procedures for safer and more effective treatment of patients in need of BMT.  相似文献   

17.
83 patients undergoing allogeneic or autologous BMT because of haematologic malignancies have been studied before and after transplantation at different intervals. The determinations consisted of lymphocyte counts, E-rosetting, lymphoblastic response, evaluation of serum immunoglobulin levels, skin testing, and in a smaller part of the patients surface marker studies using monoclonal antibodies of the BL-series. At first after BMT the lymphocyte and T cell counts went to normal between 4-18 weeks post transplant, about 4 weeks earlier in autologous than in allogeneic BMT. T suppressor cells showed an early increase compared to T helper cells which normalized much slower about 6 months after BMT. Lymphoblastic responses, however, tended to normal not before the second half of the first year both in autologous and allogeneic transplantation. Skin test reactivity became normal during the 2nd and 3rd year posttransplant, which was more complete in autologous than in allogeneic BMT. The IgG and IgM levels were depressed for half a year and IgA levels for 2 years. The most striking aspect was the multiphase course of lymphoblastic response in every individual patient. We suggest this to be the expression of sequential differentiation of donor lymphocytes.  相似文献   

18.
 The feasibility of inducing graft versus leukemia (GVL) effects with allogeneic T cells in recipients of autologous bone marrow transplantation (BMT) was studied in a murine model (BCL 1) of human B cell leukemia/lymphoma. Allogeneic cell therapy, induced by infusion with peripheral blood lymphocytes, a mixture of allogeneic spleen and lymph node cells and allogeneic activated cell therapy, induced by in vitro recombinant-interleukin-2(rIL-2)-activated allogeneic bone marrow cells in tumor-bearing mice, prevented disease development in adoptive BALB/c recipients. Concomitant in vivo activation of allogeneic lymphocytes with rIL-2 suppressed even more effectively the development of leukemia in secondary adoptive recipients of spleen cells obtained from treated mice. In contrast, in vivo administration of rIL-2 after syngeneic BMT, with or without equal numbers of syngeneic lymphocytes, led to disease development in secondary recipients. Our data suggest that effective cell therapy can be achieved after SBMT by allogeneic but not syngeneic lymphocytes and that anti-leukemic effects induced by allogeneic lymphocytes can be further enhanced by in vitro or in vivo activation of allogeneic effector cells with rIL-2. Therefore, cell therapy by allogeneic lymphocytes following autologous BMT could become an effective method for inducing GVL-like effects on minimal residual disease provided that graft versus host disease can be prevented or adequately controlled. Received: 14 May 1996 / Accepted: 6 August 1996  相似文献   

19.
In murine models of allogeneic bone marrow transplantation (BMT), MHC-mismatched recipients given a delayed infusion of donor leukocytes (DLI) at 21 days posttransplant develop significant GVHD whereas MHC-matched recipients do not. The current study was initially designed to test the hypothesis that small numbers of T cells in the MHC-mismatched donor bone marrow (BM) graft exacerbated graft-vs-host disease (GVHD) when DLI was administered at 21 days after BMT. Ex vivo depletion of Thy1+ cells from the donor BM had no impact on the severity of GVHD after DLI. However, depletion of donor T cells in vivo with a Thy1 allele-specific mAb given after BMT resulted in significantly more severe GVHD after DLI. Similar results were obtained in a MHC-matched model of allogeneic BMT, indicating that this was a general phenomenon and not model dependent. These results indicated that a population of donor-derived Thy1+ cells suppressed graft-vs-host reactivity after DLI. Results of experiments with thymectomized recipients demonstrated that an intact thymus was required for generation of the immunoregulatory donor cells. Experiments using TCR beta-chain knockout mice as BM donors indicated that the immunosuppressive Thy1+ cells coexpressed alphabetaTCR heterodimers. Similar experiments with CD4 and CD8 knockout donor BM suggested that the immunoregulatory Thy1+alphabetaTCR+ cells consisted of two subpopulations: a CD4+CD8- subpopulation and a CD4-CD8- subpopulation. Together, these results show that thymus-derived, Thy1+alphabetaTCR+ donor cells generated early after allogeneic BMT suppress the graft-vs-host reactivity of T cells given as DLI. These cells may mediate dominant peripheral tolerance after allogeneic BMT.  相似文献   

20.
Acute marrow graft rejection in allogeneic or semiallogeneic donor-recipient mouse combinations has been suggested to be caused by natural killer (NK) cells. The unique in vitro specificity of NK cells for tumor cells, however, does not explain the specific rejection of bone marrow grafts by NK cells. Recent experiments have implicated antibody in marrow graft recipients as the specificity-inducing component that guides NK cells in an antibody-dependent cytotoxic (ADCC) reaction to attack the marrow graft. On the basis of this hypothesis, one would postulate that nonresponder marrow graft recipients can be converted into responders by injection with antibody of appropriate specificity. Results presented in this report show that this is indeed possible. Specific monoclonal or polyclonal antibody of IgG isotype induces marrow graft rejection in nonresponder recipients. This can be demonstrated in allogeneic as well as in semi-allogeneic (hybrid resistance) donor-recipient strain combinations. Antibody-induced marrow graft rejection is independent of complement and dependent on the presence of NK cells. Surprisingly, graft rejection induced by antibody is quite efficient in allogeneic and semiallogeneic marrow donor-recipient combinations, whereas it is generally poor in syngeneic combinations. This result is not understood if NK cells lyse bone marrow cells solely in an ADCC-type reaction. Because NK cells can lyse targets in an antibody-dependent as well as independent reaction, it is proposed that the binding of NK cells to targets via their receptors plays an additional role in the rejection of bone marrow in vivo. Preliminary evidence for this possibility is that NK cells in the apparent absence of antibody may have a detectable suppressive effect on the growth of marrow grafts in F1 hybrid mice transplanted with parental marrow grafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号