首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of chemically modified PMMA microspheres for enzyme immobilization   总被引:4,自引:0,他引:4  
Li S  Hu J  Liu B 《Bio Systems》2004,77(1-3):25-32
Modified poly(methyl methacrylate) (PMMA) microspheres, about 7microm in diameter, carrying aldehyde groups on their surfaces were synthesized and used as the support for enzyme immobilization. The immobilizing behavior as well as the properties of immobilized enzyme was studied. The amount of bound enzyme can be extended to 76.8mg g(-1) support, which is relatively much higher than other supports. The kinetic investigation derived from three typical models shows that the practical process is more complicated than the ideal condition, with one or more interactions being involved in the immobilization process. The K(m) value is actually larger and V(max) is smaller in the immobilized form than those in the free form. The increased resistance of the immobilized enzyme against the changes of temperature indicates that immobilizing enzyme onto the modified microspheres is useful for enzyme immobilization.  相似文献   

2.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

3.
Nonporous polystyrene/poly(sodium styrene sulfonate) (PS/PNaSS) microspheres were used for immobilization of amyloglucosidase and the properties of immobilized enzyme was studied and compared with those of free enzyme. Sulfonated groups on the PS/PNaSS microspheres present a very simple, mild, and time-saving process for enzyme immobilization. Nonporous microspheres provide their surface for immobilization of enzyme and prevent the diffusion limitation problem in the pore. Despite the high concentration of bound enzyme the influence of immobilization on kinematic parameters, K(m) and V(max), is relatively low compare to other porous supports. Simple and time-saving immobilization procedure as well as the effects of pH and temperature on immobilized enzyme also showed that the PS/PNaSS microspheres could be good support.  相似文献   

4.
壳聚糖固定化琼脂酶的研究   总被引:1,自引:0,他引:1  
采用壳聚糖微球对琼脂酶进行固定化,在单因素实验的基础上用正交试验法确定最佳固定化工艺。结果表明:在戊二醛体积分数为2.5%,交联时间为6 h,加酶量为15 mL,固定时间为3 h时固定酶的活力最高;固定化酶的最适反应温度及最适pH分别为50℃和8.5,高于游离酶;同时其热稳定性及操作稳定性均高于游离酶。  相似文献   

5.
Magnetic macroporous PGMA and PHEMA microspheres containing carboxyl groups are synthesized by multi-step swelling and polymerization followed by precipitation of iron oxide inside the pores. The microspheres are characterized by SEM, IR spectroscopy, AAS, and zeta-potential measurements. Their functional groups enable bioactive ligands of various sizes and chemical structures to couple covalently. The applicability of these monodisperse magnetic microspheres in biospecific catalysis and bioaffinity separation is confirmed by coupling with the enzyme trypsin and huIgG. Trypsin-modified magnetic PGMA-COOH and PHEMA-COOH microspheres are investigated in terms of their enzyme activity, operational and storage stability. The presence of IgG molecules on microspheres is confirmed.  相似文献   

6.
Magnetic oleic-acid-coated Fe?O? nanoparticles were first introduced into 1, 1-diphenylethylene (DPE)-controlled radical polymerization system to prepare superparamagnetic microspheres for enzyme immobilization by two steps of polymerization. In the presence of DPE, glycidyl methacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl trimethyl ammonium chloride with charge were selected as copolymering monomers based on their reactive functional group and excellent biocompatibility which were suitable for immobilization of Candida rugosa lipase (CRL). The resulting magnetic microspheres were characterized by means of scanning electron microscope, Fourier transform infrared spectrum, thermogravimetric analysis and vibrating sample magnetometry. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis SDS-PAGE analysis was also conducted to demonstrate whether CRL is covalently immobilized or only physically adsorbed. The results indicated that the polymerization was successfully carried out, and lipase was immobilized on the magnetic microspheres through ionic adsorption and covalent binding under mild conditions. The immobilized lipase exhibited high activity recovery (69.7%), better resistance to pH and temperature inactivation in aqueous phase, as well as superior reusability in nonaqueous phase. The data showed that the resulting carrier could hold an amphiphilic property.  相似文献   

7.
纳米磁性壳聚糖微球固定化酵母醇脱氢酶的研究   总被引:1,自引:0,他引:1  
建立了以纳米级磁性壳聚糖微球(magnetic chitosan microspheres , M-CS)为载体固定化酵母醇脱氢酶(yeast alcohol dehydrogenase,YADH)的方法,优化了YADH的固定化条件,考察了固定化酶的性质。结果表明,M-CS 呈规则的圆球形,粒径在30nm 左右,具有较好的磁响应性。酵母醇脱氢酶固定化适宜条件为:50 mg 磁性壳聚糖微球,加入20mL 0.25 mg/mL 酵母醇脱氢酶(蛋白质含量)磷酸盐缓冲液(0.05 mol/L ,pH 7.0) ,在4 ℃固定2h。M-CS 容易吸附酵母醇脱氢酶,但吸附的酶量受载体与酶的比例、溶液的离子浓度、溶液pH的影响明显,而温度对吸附的酶量的影响则相对较弱。相对于游离的酵母醇脱氢酶,固定化酶的最适温度略有升高,可明显改善其热稳定性、酸碱稳定性、操作稳定性和贮存稳定性。  相似文献   

8.
《Process Biochemistry》2014,49(5):845-849
A novel and simple process for the surface functionalization of micron-sized monodisperse magnetic polystyrene (PS) microbeads was reported. The polystyrene seed particles were prepared prior to the dispersion polymerization method. Afterwards, series of surface chemical modifications on polystyrene microspheres were conducted, and three end-functional microspheres with carboxyl, imidazolyl and sulphydryl groups were obtained. The functional magnetic polystyrene microspheres were prepared by impregnation and subsequent precipitation of ferric and ferrous ions into the polystyrene particles. Finally, the functional magnetic polystyrene was used for the reversible immobilization of glucoamylase via metal-affinity adsorption. The results indicated that the obtained immobilized glucoamylase presented excellent reusability, applicability, magnetic response and regeneration of supports. The magnetic PS microspheres retained >65% of its initial activity at 65 °C over 6 h; and the lowest residual activity of immobilized glucoamylase prepared by regenerated supports still remained about 50% of the initial activity after the 10th cycles.  相似文献   

9.
In this work we use micro-size poly(methyl methacrylate)/acrylaldehyde microspheres as a support for pepsin immobilization. The aldehyde groups on the microspheres offer a very simple, mild and firm combination for enzyme immobilization. The amount of enzyme we can bind to this support reaches 82 mg/g, which is much higher than for other supports (mostly less than 10 mg/g). Compared to free enzyme, the Km of immobilized enzyme is increased, whereas the Vmax is decreased. Further, the Vmax/Km value for immobilized pepsin is about 50% of the value for free enzyme. This is better than values reported previously, generally lower than 35%. The optimum temperature shifts from 43 degrees C for free pepsin to 47 degrees C. However, the optimum pH does not change between free and immobilized enzyme. This improved resistance of the immobilized enzyme towards changes in temperature and pH also shows that the aldehyde modified poly(methyl methacrylate)/acrylaldehyde microspheres can be a valuable support for pepsin immobilization.  相似文献   

10.
Abstract

Surface interactions between an enzyme and support influence the retention of activity after immobilization. Chemical modification of enzymes prior to immobilization may be used to alter these interactions and enhance activity retention. Lactase (A. oryzae) was covalently conjugated to P(S/V-COOH) microspheres, with surface carboxylic acid densities of 9 μeq/g and 137 μeq/g, using carbodiimide chemistry. Under optimum pH and temperature conditions, activity retention was greater when the enzyme was conjugated to microspheres containing a lower density of surface carboxylic acid groups (32% activity retention) than when the enzyme was conjugated to microspheres having a greater density of surface carboxylic acid groups (11% activity retention). Chemical modification of lactase carboxylic acid groups with glucosamine prior to immobilization was evaluated as a means to increase activity retention. Under optimal conditions, modification resulted in a 17% decrease in soluble enzyme activity compared to the native enzyme. However, immobilization of the modified enzyme yielded 85% and 64% activity retention after conjugation to microspheres with a lower and higher density of surface carboxylic acid groups, respectively. The results suggest that increases in surface carboxylic acid density on the carrier promote the loss of lactase activity after immobilization, and chemical modification of the enzyme with glucosamine provides a means to retain catalytic activity after attachment to these supports.  相似文献   

11.
In this study, a unique carrier magnetic chitosan microspheres (MCTS) was simply synthesized by anchoring Fe3O4 onto chitosan for direct immobilization of cellulases cross-linked by gluteraldehye. The structure and morphology were characterized using FT-IR, TGA, VSM and SEM. The optimum immobilization conditions were investigated: immobilized pH 7.0, amount of enzyme 15?mL (0.1?mg/mL), immobilization temperature 30?°C, immobilization time 5?h. At optimum conditions, MCTS achieved maximum enzyme solid loading rate of 73.5?mg/g, while recovery of enzyme activity approached to 71.6%. In the recycle test, immobilized cellulases operated without significant loss in its initial performances after 3 cycles, which indicated that immobilized cellulases can be regenerated and reused. The immobilized enzyme has better values of thermal and storage stability than that of free enzyme. Therefore, MCTS may be considered as a candidate with potential value of application in large-scale operations for cellulases immobilization.  相似文献   

12.
A simple preparation process for the monodispersed pH-sensitive core-shell magnetic microspheres was carried out consisting of chitosan self-assembled on magnetic iron oxide nanoparticles. Meanwhile, glucoamylase was immobilized as a model enzyme on this carrier of Fe3O4/CS microspheres by ionic adsorption. The morphology, inner structure, and high magnetic sensitivity of the resulting magnetic chitosan microspheres were studied, respectively, with a field emission scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR spectroscopy, thermogravimetric analysis (TGA), and a vibrating sample magnetometer (VSM). Subsequently, the properties of glucoamylase immobilized on the regenerated supports were also investigated by determining storage stability, pH stability, reusability, magnetic response, and regeneration of supports. The results from characterization and determination remarkably indicated that the immobilized glucoamylase obtained presents excellent storage stability, pH stability, reusability, magnetic response, and regeneration of supports. Therefore, this kind of magnetic Fe3O4/CS microspheres with perfect monodispersity should be an ideal support for enzyme immobilization.  相似文献   

13.
Pig muscle lactate dehydrogenase (L-lactate:NAD oxidoreductase, EC 1.1.1.27) was covalently immobilized on polyacrylamide beads containing carboxylic functional groups activated by water-soluble carbodiimide. The effects of immobilization on the catalytic properties and stability of the lactate dehydrogenase were studied. There was no shift in the pH optimum of the immobilized enzyme compared to that of the soluble one. The apparent optimum temperature of the soluble enzyme was 65 degrees C, while that of the immobilized enzyme was between 50 and 65 degrees C. The apparent Km values of the immobilized enzyme with pyruvate and NADH substrates were higher than those of the soluble enzyme. As a result of immobilization, enhanced stabilities were found against heat treatment, changes in pH, and urea denaturation.  相似文献   

14.
Comparative studies have been carried out on soluble and immobilized yeast hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1). The enzyme was immobilized by covalent attachment to a polyacrylamide type support containing carboxylic functional groups. The effects of immobilization on the catalytic properties and stability of hexokinase were studied. As a result of immobilization, the pH optimum for catalytic activity was shifted in the alkaline direction to ~pH 9.7. The apparent optimum temperature of the immobilized enzyme was higher than that of the soluble enzyme. The apparent Km value with D-glucose as substrate increased, while that with ATP as substrate decreased, compared with the data for the soluble enzyme. Differences were found in the thermal inactivation processes and stabilities of the soluble and immobilized enzymes. The resistance to urea of the soluble enzyme was higher at alkaline pH values, while that for the immobilized enzyme was greatest at ~pH 6.0.  相似文献   

15.
双醛淀粉柔性固定木瓜蛋白酶研究   总被引:13,自引:0,他引:13  
提出“柔性固定化酶”的模型,即:用一亲水、柔性高分子链接枝于载体表面制得柔性固定化载体,再用其以共价键合的方式进行酶的柔性固定化。其特点是:柔性固定可改善因直接固定化及手臂固定化使酶失活的缺陷,并提高固定化酶的自由度;如选用粒径单分散微球可改善固定化反应及固定化酶催化反应的均一性。以双醛淀粉(DAS)为柔性链对羧基化聚苯乙烯载体进行柔性化修饰后,固定木瓜蛋白酶,其活力回收率可达50%.相当于用戊二醛进行手臂固定化的活力回收率的2倍。  相似文献   

16.
A novel magnetic poly(vinyl acetate (VAc)–divinyl benzene (DVB)) material (8–34 μm) was synthesized by copolymerization of vinyl acetate and divinyl benzene using oleic acid-stabilized magnetic colloids as magnetic cores. The magnetic colloids and the copolymer microspheres were characterized with transmission and scanning electron microscopes, respectively. Magnetization of the microspheres could be described by the Langevin function. All the observations indicated that the microspheres were superparamagnetic. Magnetic sedimentation of the microspheres was achieved within 3 min, over 300 times faster than the gravitational sedimentation. Candida cylindracea lipase (CCL) was immobilized to the porous carrier at up to 6750 IU/g carrier, remarkably higher than the previous studies. The pH and temperature dependencies of the immobilized CCL were investigated and the optimum temperature and pH for the immobilized CCL were determined. Activity amelioration of the immobilized CCL for the hydrolysis of olive oil was observed, indicating an interfacial activation of the enzyme after immobilization. Moreover, the immobilized CCL showed enhanced thermal stability and good durability in the repeated use after recovered by magnetic separations.  相似文献   

17.
The synthesis of polyurethane microsphere-gold nanoparticle "core-shell" structures and their use in the immobilization of the enzyme endoglucanase are described. Assembly of gold nanoparticles on the surface of polymer microspheres occurs through interaction of the nitrogens in the polymer with the nanoparticles, thereby precluding the need for modifying the polymer microspheres to enable such nanoparticle binding. Endoglucanse could thereafter be bound to the gold nanoparticles decorating the polyurethane microspheres, leading to a highly stable biocatalyst with excellent reuse characteristics. The immobilized enzyme retains its biocatalytic activity and exhibits improved thermal stability relative to free enzyme in solution. The high surface area of the host gold nanoparticles renders the immobilized enzyme "quasi free", while at the same time retaining advantages of immobilization such as ease of reuse, enhanced temporal and thermal stability, etc.  相似文献   

18.
This article describes the fabrication of a rigid magnetic monodisperse bead (M-PGMA-TRI, 4.92 microm) with polyglycidyl methacrylate (PGMA) cross-linked by trimethylolpropane trimethacrylate (TRI). This was realized by adding a proper amount (2%, w/w) of TRI after 3 h of the dispersion-polymerization reaction with the monomer of GMA. The mono-sized microspheres were further processed to introduce magnetic granules by sulfonation and penetration-deposition approaches. The monodisperse bead (M-PGMA) without TRI addition was also fabricated for comparison. The morphology, size and magnetic characteristics of the microspheres were extensively characterized. The M-PGMA-TRI microspheres were nonporous, of smooth surface and superparamagnetic with a saturation magnetization of 13.0 emicro/g. Recycled use of the material for protein adsorption exhibited stability of the magnetic properties of the M-PGMA-TRI, as compared to the significant loss of the saturation magnetization of the M-PGMA. The chemical stability of the M-PGMA-TRI was also confirmed by examining its protein adsorption and magnetic properties after incubation in various solutions such as acidic buffer (pH 2.2) for 24 h. The adsorption capacity of gamma-globulin reached 287.2 mg/g and kept stable in the repeated adsorption/desorption/regeneration cycles. The results indicated that the introduction of 2% TRI was promising for producing rigid magnetic mono-sized microspheres for protein adsorption.  相似文献   

19.
A β-glucosidase extracted from bitter almond (Prunus dulcis var. amara) was immobilized on polyamine microspheres (PA-M) for catalytic octyl glucoside (OG) synthesis from glucose and octanol through reversed hydrolysis. The immobilization increased the activity of enzyme at pH 6.0–7.0, and the optimal reaction temperature for immobilized enzyme was identical to the free enzyme. The thermal stability and solvent tolerance of enzyme were increased by its immobilization. In the co-solvent system using 10% t-butyl alcohol and 10% (v/v) water, the yield of OG was increased by 1.7-fold compared to the yield from the system without co-solvent. Based on dynamic and Dixon plot analyses, the initial reaction velocity (V0) increased approximately three-fold on immobilization and the OG synthesis was inhibited by surplus glucose. The inhibition dissociation constants for free and immobilized enzyme were 219?mM and 116?mM, respectively. A fed-batch mode was applied in the OG synthesis to minimize substrate inhibition. After 336?h of reaction, the OG yield and the conversion rate of glucose reached 134?mM and 59.6%, respectively. Compared to the batch operation, the fed-bath operation increased the OG yield and the conversion rate of glucose by 340% and 381%, respectively.  相似文献   

20.
Gold nanoparticles are excellent biocompatible surfaces for the immobilization of enzymes. However, separation of the gold nanoparticle-enzyme bioconjugate material from the reaction medium is often difficult. In this study, we investigate the assembly of the gold nanoparticles on the surface of the amine-functionalized zeolite microspheres in the formation of zeolite-gold nanoparticle "core-shell" structures and, thereafter, the use of this structure in immobilization of fungal protease. The assembly of gold nanoparticles on the zeolite surface occurs through the amine groups present in 3-aminopropyltrimethoxysilane (3-APTS). The fungal proteases bound to the massive "core-shell" structures were easily separated from the reaction medium by mild centrifugation and exhibited excellent reuse characteristics. The biocatalytic activity of fungal protease in the bioconjugate was marginally enhanced relative to the free enzyme in solution. The bioconjugate material also showed significantly enhanced pH and temperature stability and a shift in the optimum temperature of operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号