共查询到20条相似文献,搜索用时 15 毫秒
1.
Chapeaurouge A Johansson JS Ferreira ST 《The Journal of biological chemistry》2002,277(19):16478-16483
The folding of a model native-like dimeric four-helix bundle protein, (alpha(2))(2), was investigated using guanidine hydrochloride, hydrostatic pressure, and low temperature. Unfolding by guanidine hydrochloride followed by circular dichroism and intrinsic fluorescence spectroscopy revealed a highly cooperative transition between the native-like and unfolded states, with free energy of unfolding determined from CD data, DeltaG(unf) = 14.3 +/- 0.8 kcal/mol. However, CD and intrinsic fluorescence data were not superimposable, indicating the presence of an intermediate state during the folding transition. To stabilize the folding intermediate, we used hydrostatic pressure and low temperature. In both cases, dissociation of the dimeric native-like (alpha(2))(2) into folded monomers (alpha(2)) was observed. van't Hoff analysis of the low temperature experiments, assuming a two-state dimer 171-monomer transition, yielded a free energy of dissociation of (alpha(2))(2) of DeltaG(diss) = 11.4 +/- 0.4 kcal/mol, in good agreement with the free energy determined from pressure dissociation experiments (DeltaG(diss) = 10.5 +/- 0.1 kcal/mol). Binding of the hydrophobic fluorescent probe 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) to the pressure- and cold-dissociated states of (alpha(2))(2) indicated the existence of molten-globule monomers. In conclusion, we demonstrate that the folding pathway of (alpha(2))(2) can be described by a three-state transition including a monomeric molten globule-like state. 相似文献
2.
We investigated the hydrophobic packing of two previously designed caviteins, LG2 and LG3, which differ by one Gly in the linker regions between the peptide sequence and the cavitand scaffold. We sought to diminish the putative native-like properties of LG2 and LG3, and see if we could diagnose a change in the conformational specificity of the hydrophobic core. We replaced the leucine residues with norleucine residues at the hydrophobic positions in LG2 and LG3, to create NG2 and NG3, respectively. LG2 exhibited more dispersion, but less sharp signals than LG3 in the amide region of its (1)H NMR spectrum. NG3 and NG2 were found to be slightly less helical and significantly less stable toward guanidine hydrochloride compared with their reference caviteins. The (1)H NMR spectrum of NG2 was very similar to that of LG2, whereas there was a noticeable loss in the number and sharpness of the amide signals of NG3 compared with LG3. These data suggest that LG3 is very well packed; a loss in conformational specificity resulted from replacement of the leucine residues with norleucine residues. In contrast, the packing and dynamics of the hydrophobic core in LG2 were similar to those in NG2 (both more modest than LG3), as their (1)H NMR spectra were virtually indistinguishable. Overall, substitution of leucine by norleucine provided an efficient, convenient, and informative probe of the packing and dynamics of our caviteins' hydrophobic cores. 相似文献
3.
4.
The effects of various mechanisms of metalloporphyrin reduction potential modulation were investigated experimentally using a robust, well-characterized heme protein maquette, synthetic protein scaffold H10A24 [?CH(3)()CONH-CGGGELWKL.HEELLKK.FEELLKL.AEERLKK. L-CONH(2)()?(2)](2). Removal of the iron porphyrin macrocycle from the high dielectric aqueous environment and sequestration within the hydrophobic core of the H10A24 maquette raises the equilibrium reduction midpoint potential by 36-138 mV depending on the hydrophobicity of the metalloporphyrin structure. By incorporating various natural and synthetic metalloporphyrins into a single protein scaffold, we demonstrate a 300-mV range in reduction potential modulation due to the electron-donating/withdrawing character of the peripheral macrocycle substituents. Solution pH is used to modulate the metalloporphyrin reduction potential by 160 mV, regardless of the macrocycle architecture, by controlling the protonation state of the glutamate involved in partial charge compensation of the ferric heme. Attempts to control the reduction potential by inserting charged amino acids into the hydrophobic core at close proximity to the metalloporphyrin lead to varied success, with H10A24-L13E lowering the E(m8.5) by 40 mV, H10A24-E11Q raising it by 50 mV, and H10A24-L13R remaining surprisingly unaltered. Modifying the charge of the adjacent metalloporphyrin, +1 for iron(III) protoporphyrin IX or neutral for zinc(II) protoporphyrin IX resulted in a loss of 70 mV [Fe(III)PPIX](+) - [Fe(III)PPIX](+) interaction observed in maquettes. Using these factors in combination, we illustrate a 435-mV variation of the metalloporphyrin reduction midpoint potential in a simple heme maquette relative to the about 800-mV range observed for natural cytochromes. Comparison between the reduction potentials of the heme maquettes and other de novo designed heme proteins reveals global trends in the E(m) values of synthetic cytochromes. 相似文献
5.
Monien BH Drepper F Sommerhalter M Lubitz W Haehnel W 《Journal of molecular biology》2007,371(3):739-753
Design and chemical synthesis of de novo heme proteins with enzymatic activity on cellulose membranes is described. 352 antiparallel four-helix bundle proteins with a single histidine for heme ligation were assembled from three different sets of short amphipathic helices on membrane-bound peptide templates. The templates were coupled by linkers to cellulose membranes of microplate format, which could be cleaved for control of intermediate and final products. The incorporation of heme and the heme oxygenase activity of the 352 proteins were monitored by measuring UV-visible spectra directly on the cellulose. The kinetics of the heme oxygenase reaction was studied by monitoring the decrease of the Soret band and the transient absorbance of verdoheme being an intermediate product in the formation of biliverdin. Four of the proteins covering a broad range of the enzymatic rate constants were selected and synthesized in solution for further characterization. Detailed studies by redox potentiometry, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy yielded information about the aggregation state of the proteins, the spin state and the putative coordination environment of the iron. The amount of five-coordinated high-spin iron and a positive reduction potential were found to promote the oxygenase activity of the proteins. 相似文献
6.
Walsh ST Sukharev VI Betz SF Vekshin NL DeGrado WF 《Journal of molecular biology》2001,305(2):361-373
De novo protein design provides a tool for testing the principles that stabilize the structures of proteins. Recently, we described the design and structure determination of alpha(3)D, a three-helix bundle protein with a well-packed hydrophobic core. Here, we test the malleability and adaptability of this protein's structure by mutating a small, Ala residue (A60) in its core to larger, hydrophobic side-chains, Leu and Ile. Such changes introduce strain into the structures of natural proteins, and therefore generally destabilize the native state. By contrast, these mutations were slightly stabilizing ( approximately 1.5 kcal mol(-1)) to the tertiary structure of alpha(3)D. The value of DeltaC(p) for unfolding of these mutants was not greatly affected relative to wild-type, indicating that the change in solvent accessibility for unfolding was similar. However, two-dimensional heteronuclear single quantum coherence spectra indicate that the protein adjusts to the introduction of steric bulk in different ways. A60L-alpha(3)D showed serious erosion in the dispersion of both the amide backbone as well as the side-chain methyl chemical shifts. By contrast, A60I-alpha(3)D showed excellent dispersion of the backbone resonances, and selective changes in dispersion of the aliphatic side-chains proximal to the site of mutation. Together, these data suggest that alpha(3)D, although folded into a unique three-dimensional structure, is nevertheless more malleable and flexible than most natural, native proteins. 相似文献
7.
Disulfide crosslinks to probe the structure and flexibility of a designed four-helix bundle protein. 总被引:1,自引:4,他引:1
下载免费PDF全文

L. Regan A. Rockwell Z. Wasserman W. DeGrado 《Protein science : a publication of the Protein Society》1994,3(12):2419-2427
The introduction of disulfide crosslinks is a generally useful method by which to identify regions of a protein that are close together in space. Here we describe the use of disulfide crosslinks to investigate the structure and flexibility of a family of designed 4-helix bundle proteins. The results of these analyses lend support to our working model of the proteins' structure and suggest that the proteins have limited main-chain flexibility. 相似文献
8.
In the context of reduced protein models, Monte Carlo simulations of three de novo designed helical proteins (four-member helical bundle) were performed. At low temperatures, for all proteins under consideration, protein-like folds having different topologies were obtained from random starting conformations. These simulations are consistent with experimental evidence indicating that these de novo designed proteins have the features of a molten globule state. The results of Monte Carlo simulations suggest that these molecules adopt four-helix bundle topologies. They also give insight into the possible mechanism of folding and association, which occurs in these simulations by on-site assembly of the helices. The low-temperature conformations of all three sequences have the features of a molten globule state. 相似文献
9.
Wei Y Liu T Sazinsky SL Moffet DA Pelczer I Hecht MH 《Protein science : a publication of the Protein Society》2003,12(1):92-102
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the "binary code" strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well-folded de novo proteins, we constructed a second-generation library based upon a new structural scaffold designed to fold into 102-residue four-helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are alpha-helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well-ordered structures; and (3) one protein forms a well-folded structure with native-like features. The proteins from this new 102-residue library are substantially more stable and dramatically more native-like than those from an earlier binary patterned library of 74-residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four-helix bundles. Moreover, these results show that the binary code strategy--if applied to an appropriately designed structural scaffold--can generate large collections of stably folded and/or native-like proteins. 相似文献
10.
11.
T. Tanaka H. Kimura M. Hayashi Y. Fujiyoshi K. Fukuhara H. Nakamura 《Protein science : a publication of the Protein Society》1994,3(3):419-427
A series of 204 amino acid proteins intended to form TIM (triose phosphate isomerase) barrel structures were designed de novo. Each protein was synthesized by expression of the synthetic gene as a fusion protein with a portion of human growth hormone in an Escherichia coli host. After BrCN treatment, the protein was purified to homogeneity. The refolded proteins are globular and exist as monomers. One of the designed proteins is stable toward guanidine hydrochloride (GuHCl) denaturation, with a midpoint of 2.6 M determined from CD and tryptophan fluorescence measurements. The GuHCl denaturation is well described by a 2-state model. The NMR spectra, the thermal denaturation curves, and the 1-anilino-8-naphthalene sulfonic acid binding imply that the stability of the protein arises mainly from hydrophobic interactions, which are probably of a nonspecific nature. The protein has a similar shape to that of rabbit triosephosphate isomerase, as determined by electron microscopy. 相似文献
12.
Proteins with complex folding kinetics will be susceptible to misfolding at some stage in the folding process. We simulate this problem by using the diffusion-collision model to study non-native kinetic intermediate misfolding in a four-helix bundle protein. We find a limit on the size of the pairwise hydrophobic area loss in non-native intermediates, such that burying above this limit creates long-lasting non-native kinetic intermediates that would disrupt folding and prevent formation of the native state. Our study of misfolding suggests a method for limiting the production of misfolded kinetic intermediates for helical proteins and could, perhaps, lead to more efficient production of proteins in bulk. 相似文献
13.
A protein hydrogel system based on the assembly of a four-helix bundle motif was proposed and synthesized by genetic engineering methods. This new polypeptide, named GBH1, consists of identical amphipathic helices of 22 residues in length oriented in opposite fashion to one another at each end of a polypeptide with a total length of 227 amino acids. The middle portion of the polypeptide (residues 79-147) is an unstructured random coil. The region between the amphipathic and unstructured segment is an α-helical stretch (23-78 and 148-204) not possessing a sequence compatible with a coiled-coil conformation, but rather possesses regions that have overwinding of the helix. The thermal unfolding of GBH1 shows more than one inflection point (T(m1) = 30.5 °C, T(m2) = 64.6 °C), indicative of a partially unfolded intermediate and, thus, multiple interactions in the folded state. A qualitative assessment of hydrogel formation with varying pH showed that acidic conditions did not support the gel state, indirectly indicating that the proposed four-helix bundle is the major cross-linking structure and not a leucine zipper motif. Scanning electron microscopy reveals a network of interacting protein molecules forming a spongelike matrix with numerous pores that would be occupied with water molecules. 相似文献
14.
The binding of glycosaminoglycans to a synthetic peptide (SKAQKAQAKQAKQAQKAQKAQAKQAKQW-CONH(2)), consisting of a hybrid consensus heparin binding sequence, is studied using circular dichroism, fluorescence anisotropy and nuclear magnetic resonance techniques. The results unveil certain novel features, most importantly, the peptide binds preferentially to iduronic acid containing glycosaminoglycans and the dissociation constant for the peptide-heparin complex was found to be 30 nM. Interestingly, higher order intermolecular association(s)/aggregation was not observed, especially at saturating concentrations of the ligand. The helical structure of the peptide backbone, induced upon binding to a particular glycosaminoglycan is directly related to their binding affinity. In our opinion, studies on such unconventional hybrid peptide sequences containing low density basic amino acid residues would lead to the design of sequence specific glycosaminoglycan binding peptides. 相似文献
15.
Gillespie B Vu DM Shah PS Marshall SA Dyer RB Mayo SL Plaxco KW 《Journal of molecular biology》2003,330(4):813-819
We address the importance of natural selection in the origin and maintenance of rapid protein folding by experimentally characterizing the folding kinetics of two de novo designed proteins, NC3-NCAP and ENH-FSM1. These 51 residue proteins, which adopt the helix-turn-helix homeodomain fold, share as few as 12 residues in common with their most closely related natural analog. Despite the replacement of up to 3/4 of their residues by a computer algorithm optimizing only thermodynamic properties, the designed proteins fold as fast or faster than the 35,000 s(-1) observed for the closest natural analog. Thus these de novo designed proteins, which were produced in the complete absence of selective pressures or design constraints explicitly aimed at ensuring rapid folding, are among the most rapidly folding proteins reported to date. 相似文献
16.
To understand the key determinants in calcium-binding affinity, a calcium-binding site with pentagonal bipyramid geometry was designed into a non-calcium-binding protein, domain 1 of CD2. This metal-binding protein has five mutations with a net charge in the coordination sphere of -5 and is termed DEEEE. Fluorescence resonance energy transfer was used to determine the metal-binding affinity of DEEEE to the calcium analog terbium. The addition of protein concentration to Tb(III) solution results in a large enhancement of Tb(III) fluorescence due to energy transfer between terbium ions and aromatic residues in CD2-D1. In addition, both calcium and lanthanum compete with terbium for the same desired metal binding pocket. Our designed protein exhibits a stronger affinity for Tb(III), with a K(d) of 21 microM, than natural calcium-binding proteins with a similar Greek key scaffold. 相似文献
17.
The diffusion-collision model (DCM) is applied to the folding kinetics of protein L and protein G. In the DCM, the two proteins are treated as consisting of two beta-hairpins and one alpha-helix, so that they are isomorphous with the three-helix bundle DCM model. In the absence of sequence dependent factors, both proteins would fold in the same way in the DCM, with the coalescence of the N-terminal hairpin and the helix slightly favored over the C-terminal hairpin and the helix because the former are closer together than the latter. However, sequence dependent factors make the N-terminal hairpin of protein L and the C-terminal hairpin of protein G more stable in the ensemble of unfolded conformations. This difference in the stabilities gives rise to the difference in the calculated folding behavior, in agreement with experiment. 相似文献
18.
19.
The kinetics and thermodynamics of an off-lattice model for a three-helix bundle protein are investigated as a function of a bias gap parameter that determines the energy difference between native and non-native contacts. A simple dihedral potential is used to introduce the tendency to form right-handed helices. For each value of the bias parameter, 100 trajectories of up to one microsecond are performed. Such statistically valid sampling of the kinetics is made possible by the use of the discrete molecular dynamics method with square-well interactions. This permits much faster simulations for off-lattice models than do continuous potentials. It is found that major folding pathways can be defined, although ensembles with considerable structural variation are involved. The large gap models generally fold faster than those with a smaller gap. For the large gap models, the kinetic intermediates are non-obligatory, while both obligatory and non-obligatory intermediates are present for small gap models. Certain large gap intermediates have a two-helix microdomain with one helix extended outward (as in domain-swapped dimers); the small gap intermediates have more diverse structures. The importance of studying the kinetic, as well as the thermodynamics, of folding for an understanding of the mechanism is discussed and the relation between kinetic and equilibrium intermediates is examined. It is found that the behavior of this model system has aspects that encompass both the "new" view and the "old" view of protein folding. 相似文献
20.
Several studies have demonstrated that proteins incorporating fluorinated analogues of hydrophobic amino acids such as leucine and valine into their hydrophobic cores exhibit increased stability toward thermal denaturation and unfolding by guanidinium chloride. However, estimates for the increase in the thermodynamic stability of a protein (DeltaDeltaG(unfold)) afforded by the substitution of a hydrophobic amino acid with its fluorinated analogue vary quite significantly. To address this, we have designed a peptide that adopts an antiparallel four-helix bundle structure in which the hydrophobic core is packed with leucine, and investigated the effects of substituting the central two layers of the core with L-5,5,5,5',5',5'-hexafluoroleucine (hFLeu). We find that DeltaDeltaG(unfold) is increased by 0.3 kcal/mol per hFLeu residue. This is in good agreement with the predicted increase in DeltaDeltaG(unfold) of 0.4 kcal/mol per residue arising from the increased hydrophobicity of the hFLeu side chain, which we determined experimentally from partitioning measurements on hFLeu and leucine. The increased stability of this fluorinated protein may therefore be ascribed to simple hydrophobic effects, rather than specific "fluorous" interactions between the hFLeu residues. 相似文献