首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
杨涛  李玉英 《生态学报》1988,8(3):220-225
高寒草甸是青藏高原分布广、面积大的主要草场类型。我们于1984年6—10月在海北高寒草甸生态系统定位站,对四种植被类型土壤的脲酶活性进行了测定,数据列于表1。试验结果表明:(1)脲酶活性有明显的季节性动态,脲酶活性出现的高峰期均在7月和8月份,9月以后随温度的下降而逐渐降低;(2)脲酶活性也有明显的层次性差异,0—10厘米深土壤脲酶活性最高,并随土壤深度的加深而递减;(3)脲酶活性与某些氮素代谢微生物的数量有不同程度的相关性;(4)脲酶活性与某些氮素代谢微生物的生化活性也有一定的相关性;(5)脲酶活性与土壤温度具有一定的相关性;(6)脲酶活性与月降水量也相关,高寒草甸的不同植被类型土壤脲酶活性的季节性变化有所不同,并且与氮素代谢微生物的数量及活性的相关性也有差异,与土壤温度和降水量的相关程度也不一样。 关于土壤脲酶活性的研究,国外已有不少报道。在国内也有一些学者对土壤脲酶活性进行过研究。但对青藏高原高寒草甸土壤的脲酶活性的研究,目前尚未见报道,因为脲酶是氮循环的一种关键酶,与土壤肥力有关。本文对高寒草甸四种植被类型土壤的脲酶活性进行了初步的研究。  相似文献   

2.
Involuntary soil intake by cows on pasture can be a potential route of entry for pollutants into the food chain. Therefore, it appears necessary to know and quantify factors affecting soil intake in order to ensure the food safety in outside rearing systems. Thus, soil intake was determined in two Latin square trials with 24 and 12 lactating dairy cows. In Trial 1, the effect of pasture allowance (20 v. 35 kg dry matter (DM) above ground level/cow daily) was studied for two sward types (pure perennial ryegrass v. mixed perennial ryegrass–white clover) in spring. In Trial 2, the effect of pasture allowance (40 v. 65 kg DM above ground level/cow daily) was studied at two supplementation levels (0 or 8 kg DM of a maize silage-based supplement) in autumn. Soil intake was determined by the method based on acid-insoluble ash used as an internal marker. The daily dry soil intake ranged, between treatments, from 0.17 to 0.83 kg per cow in Trial 1 and from 0.15 to 0.85 kg per cow in Trial 2, reaching up to 1.3 kg during some periods. In both trials, soil intake increased with decreasing pasture allowance, by 0.46 and 0.15 kg in Trials 1 and 2, respectively. In Trial 1, this pasture allowance effect was greater on mixed swards than on pure ryegrass swards (0.66 v. 0.26 kg reduction of daily soil intake between medium and low pasture allowance, respectively). In Trial 2, the pasture allowance effect was similar at both supplementation levels. In Trial 2, supplemented cows ate much less soil than unsupplemented cows (0.20 v. 0.75 kg/day, respectively). Differences in soil intake between trials and treatments can be related to grazing conditions, particularly pre-grazing and post-grazing sward height, determining at least in part the time spent grazing close to the ground. A post-grazing sward height lower than 50 mm can be considered as a critical threshold. Finally, a dietary supplement and a low grazing pressure, that is, high pasture allowance increasing post-grazing sward height, would efficiently limit the risk for high level of soil intake, especially when grazing conditions are difficult. Pre-grazing and post-grazing sward heights, as well as faecal crude ash concentration appear to be simple and practical tools for evaluating the risk for critical soil intake in grazing dairy cows.  相似文献   

3.
凋落物的彻底降解是在凋落物和土壤酶系统的综合作用下完成,酶活性的提高有利于凋落物-土壤有机物质的分解和养分释放。通过对三峡库区30年生马尾松林凋落物分解、凋落物-土壤层酶活性季节动态及其对分解的影响进行研究,结果表明:30年生马尾松林凋落物经过540 d的分解后干重剩余率是59.80%;凋落物层酶活性季节动态明显,氧化还原酶活性均是11月最低,3月最高;土壤过氧化物酶活性季节变化显著且均是11月最低,多酚氧化酶活性9月较高,而过氧化物酶活性则是6月较高。马尾松林凋落物层酶活性与土壤层酶活性差异较大,且水解酶活性差异较氧化还原酶活性差异大,凋落物层脲酶活性、纤维素酶活性和蔗糖酶活性11月、6月、9月分别是0—5 cm土壤层的6.33倍、3.24倍、10.29倍,68.14倍、16.16倍、24.81倍,25.07倍、31.88倍、29.20倍。凋落物分解速率均与土壤、凋落物层氧化还原酶活性呈极显著"S"形曲线,与凋落物层水解酶活性呈二次函数关系,与土壤层水解酶均呈极显著的线性关系。凋落物质量能引起凋落物-土壤层酶活性变化,酶活性的改变反过来影响凋落物的分解,因此,凋落物-土壤层酶活性差异与凋落物分解阶段和对共同影响因素(凋落物质量、土壤温度、水分含量和土壤养分等)的敏感性不同有关,凋落物-土壤层酶的相互作用共同影响森林生态系统的物质循环和养分循环过程。  相似文献   

4.
Purification and properties of urease from the leaf of mulberry, Morus alba   总被引:2,自引:0,他引:2  
Urease was purified from leaves of mulberry (Morus alba, L.) by ammonium sulfate fractionation, acetone fractionation and sequential column chromatography including Q-Sepharose HP, Phenyl-Sepharose HP, Superdex 200 HR and Mono Q. The enzyme was purified 5700-fold to apparent homogeneity with a recovery of 3.6%. The molecular mass of the enzyme was determined to be 90.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and 175 kDa by gel filtration, indicating that the enzyme was a homodimer. In the western blot analysis, 90.5 kDa subunit of the mulberry leaf urease cross-reacted with antiserum raised against jack bean seed urease. The N-terminal sequence of the first 20 residues of the enzyme revealed that it has a high similarity (80-90%) to ureases from other plant sources, suggesting that the mulberry leaf urease is closely related to other plant ureases. However, the mulberry leaf enzyme showed an optimum pH for activity of 9.0, while the optimum pH of most ureases isolated from plants and bacterial is neutral. In addition, the K(m) value for urea was 0.16 mM, which is lower than those of ureases from other sources. It is also proposed that urease activity ingested by browsing silkworm releases ammonia that is subsequently used in silkworm protein synthesis.  相似文献   

5.
Urease with a purity meeting the requirements of analytical use was purified from jack bean meal through steps consisting of 20% acetone extraction, heat treatment, acid precipitation, and lyophilization. For extraction of urease, one part of bean meal was mixed with 5 parts of 20% acetone containing 1 mM EDTA and 1 mM 2-mercaptoethanol, and stirred at 20 degrees C for 5 min. Milky substances in the extract were removed by heat treatment. Urease in the clear yellow supernatant was precipitated by adjusting the pH of the solution to 5.4 with citric acid. The acid precipitated urease was neutralized by dissolving in 0.015 M phosphate buffer, pH 8.5 (final pH 6.8 to 7.0) and then lyophilized. By this procedure, the purity of the enzyme was increase 14.7 fold, the recovery of activity was 63%, and the yield was 6.75 g from 1 kg of bean seeds. The specific activity of the preparation was 411 units/mg protein (240 units/mg solid), and the free ammonia content was less than 0.01 microgram per unit. Some other proteins were present in the urease preparation as examined by gel filtration and gradient polyacrylamide gel electrophoresis. The molecular weight of the enzyme estimated by gel filtration was 480,000. However, two urease activity bands with molecular weight of 230,000 and 480,000 were observed in the polyacrylamide gel electrophoregram. From the result of determination of blood urea nitrogen (BUN), this simple purification procedure could be used for practical preparation of urease from jack bean meal for clinical analysis.  相似文献   

6.
Urease was microencapsulated by forming a semipermeable polyamide membrane around aqueous microdroplets (266 microns mean diameter) containing the soluble enzyme. The yield of the interfacial polymerization technique, determined spectrophotometrically, was 83% of the original enzyme on a mass basis, resulting in a final intracapsular urease concentration of 62.3 mg ml-1 or 0.1 mM. Similar absorption spectra of broken and intact microcapsules suggested that spectrophotometry may be applied in performing direct studies on the intact microcapsules. The high activity yield of urease microcapsules relative to the mass of entrapped enzyme (92.5%) indicated minimal effects of mass transfer limitation. The mass of active urease incorporated into the nylon membrane represented 6% of the encapsulated enzyme activity. The soluble intracapsular enzyme fraction (94%) was released into solution upon rupture of the membrane. A complete mass and activity balance of the encapsulated enzyme was achieved.  相似文献   

7.
8.
Summary Studies of urease activity in an Indian Vertisol and Alfisol using both buffer (THAM pH 9.0) and non-buffer methods for assay of the urease activity showed that activity increased with increase in temperature from 10°C to a maximum at 60°C (Vertisol) and 70°C (Alfisol). Further increase in temperature decreased urease activity which was nearly totally inhibited at 100°C. Urease activity was not detected in soil samples collected in late summer when the soil moisture content was far below — 15 bar pressure. Urease activity increased with increase in moisture content up to field capacity and remained constant with further increase in moisture content. The relevance of these findings to the ICRISAT improved management practices for Vertisols, which involve seeding of crops into dry soil just before the onset of rains is discussed. Approved as Journal Article No. 288 by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

9.
Urease (EC 3.5.1.5) serves as a virulence factor in pathogens that are responsible for the development of many diseases in humans and animals. Urease allows soil microorganisms to use urea as a source of nitrogen and aid in the rapid break down of urea-based fertilizers resulting in phytopathicity. It has been well established that hydroxamic acids are the potent inhibitors of urease activity. The 3D-QSAR studies on thirty five hydroxamic acid derivatives as known urease inhibitors were performed by Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The CoMFA model produced statistically significant results with cross-validated (q(2)) 0.532 and conventional (r(2)) correlation coefficients 0.969.The model indicated that the steric field (70.0%) has greater influence on hydroxamic acid inhibitors than the electrostatic field (30.0%). Furthermore, five different fields: steric, electrostatic, hydrophobic, H-bond donor and H-bond acceptor assumed to generate the CoMSIA model, which gave q(2) 0.665 and r(2) 0.976.This model showed that steric (43.0%), electrostatic (26.4%) and hydrophobic (20.3%) properties played a major role in urease inhibition. The analysis of CoMFA and CoMSIA contour maps provided insight into the possible modification of the hydroxamic acid derivatives for improved activity.  相似文献   

10.
This paper reports on the persistence of total and immobilised enzyme activities (urease and phosphatase) in a soil amended with organic wastes containing high levels of total-urease and phosphatase activity. Fresh organic materials showed the highest values for both total-enzymatic activities. The addition of organic waste to soil increased both total-enzymatic activities in the soil, which, after 360 days, showed values above those of the control. Immobilised enzymes were also higher in the fresh wastes than in the soil with compost, while the specific enzymatic activity levels (enzymatic activity per unit of carbon) were similar. The immobilised urease activity was greater in the amended soil than in the control. At the beginning of the incubation period, the immobilised urease activity was significantly higher in the soil amended with fresh organic wastes than with compost. However, this activity decreased with incubation, whilst the compost-immobilised urease activity increased with time. The effect of organic amendment on immobilised phosphatase activity was similar to that shown by immobilised urease but less pronounced. The persistence of both enzymes was significantly higher in the soil amended with compost than in that amended with fresh materials.  相似文献   

11.
Changes in urease (E.C.3.5.1.5.) were followed during the growth of 1-year-old MM 106 and 9-year-old Golden Delicious apple trees (Malus pumila Rehd.). Urease was found in leaves, roots, and bark with actively growing tissues containing more activity than senescing tissues. The urease activity in the leaves declined steadily during leaf senescence but abscised leaves still contained about half of their initial urease activity. In the bark the urease activity changed only slightly. Urease activities in the leaves and bark of apple trees were always greater in those trees which had received an application of urea. In senescing apple leaves, urea induced a rapid increase in urease activity. The changes in total activity and specific activity of urease were parallel and suggests that urease was synthesized de novo. After urease activity reached a maximum, a rapid decline occurred. Urease was inhibited by low concentrations of ammonia and this decline may be due to product inhibition.  相似文献   

12.
凋落物化学组成对土壤微生物学性状及土壤酶活性的影响   总被引:35,自引:1,他引:34  
胡亚林  汪思龙  黄宇  于小军 《生态学报》2005,25(10):2662-2668
通过模拟试验的方法研究了单一施加杉木(Cunn inghan ia lancceola ta(L am b)Hook.)叶凋落物,杉木(C.lancceola ta)和桤木(A lnus crem astogyne Burk ill)混合凋落物,杉木(C.lancceola ta)和枫香(L iqu id am ba f orm osana H ance)混合凋落物,杉木(C.lancceola ta)、桤木(A.crem astogyne)、枫香(L.f orm osana)混合凋落物对土壤化学性状和土壤微生物量碳、代谢熵(qCO2)、土壤酶活性的影响。研究结果表明,土壤微生物学性状比土壤化学性状对不同凋落物处理的效应反应更敏感;与单一杉木叶凋落物比较,混合凋落物处理的土壤微生物量碳明显增加,土壤脲酶、蔗糖酶、脱氢酶活性升高;土壤代谢熵(qCO2)和土壤多酚氧化酶活性有下降趋势;另外,研究结果也表明,不同树种的叶凋落物混合对土壤质量的影响存在差异,有桤木叶的混合凋落物对土壤质量的改善效果似乎更明显。  相似文献   

13.
放牧对沙质草地生态系统组分的影响   总被引:17,自引:3,他引:17  
对内蒙古科尔沁沙质草地5年的放牧试验结果表明,过牧对草地生态系统的危害很大,连续5年过牧使草地生物多样性、植被盖度、高度和初级生产力分别较禁牧区低87.9%、82.1%、94.0%和57.0%,草地现存生物量仅为禁牧区的2.1%,土壤粘粒、C、N含量和微生物、小型动物数量也较之降低6.0%、31.9%、25.0%、95.0%和75.9%,地表紧实度提高274.0%,特别是次级生产力从第3年转为负增长,使草地产出功能完全破坏,封育对沙质草地十分有益,封育5年草地各项指标均有大幅度增加,轻牧和中牧下的植被盖度、高度、土壤状况处于禁牧区和重牧区之间,其中轻牧区植被情况要好于中牧区,但次级生产力低于中牧区,根据多年调查和本次试验结果可以认为,内蒙古东部半干旱沙质草地牧草的利用率应为45%~50%,草地载畜量以3~4羊单位·hm^-2比较适宜。  相似文献   

14.
 以西双版纳热带湿性季节沟谷雨林混合凋落叶作为分解基质,在不同位置季节雨林样地,采用不同网孔( 2和0.15 mm)分解袋,开展大中型土壤动物对雨林凋落叶分解影响的实验,测定了不同网孔分解袋土壤动 物多样性、凋落叶分解速率和主要养分元素释放状况。结果显示:2 mm网孔分解袋土壤动物类群相对密度 年均值为2.67~2.83目•g-1凋落物干重,个体相对密度年均值为22.3~21.77个•g-1凋落物干重,显著 高于0.15 mm网孔分解袋的类群相对密度0.27~0.28目•g-1凋落物干重和个体相对密度2.88~2.77个•g- 1凋落物干重(p<0.01),并且0.15 mm网孔分解袋中极少量的动物个体主要为小型类群弹尾目和蜱螨目( 原生动物、湿生土壤动物线虫不计),由此我们视2 mm网孔分解袋凋落叶分解由绝大多数土壤动物和其它 土壤生物共同作用,而0.15 mm网孔分解袋基本排除了大中型土壤动物对袋内凋落叶分解的影响。2 mm网 孔分解袋凋落叶物质失重率(71%左右)、分解率指数(1.88~2.44)和主要养分元素释放率明显高于 0.15 mm分解袋(34%~35%,0.48~0.58)。通过比较两种不同网孔分解袋凋落叶失重率和元素释放率的 差异,显示出季节雨林大中型土壤动物群落对凋落叶物质损失的贡献率为年均值46%左右,并使凋落叶C/N 和C/P明显降低,而对不同元素释放率的影响不同,其中对N、S和Ca元素释放率的影响较大,而对K素释放 的影响作用最小。相关分析显示,2 mm网孔分解袋内土壤动物群落类群和个体的相对密度与凋落叶物质残 留率有较好的负相关关系,而群落香农多样性指数与凋落叶分解率指数表现出一定的正相关关系。  相似文献   

15.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   

16.
Urease was immobilized on macroporous silicas using gamma-aminopropyl triethoxysilane and glutaraldehyde. The amount of protein on the surface, the structure of pores of the support and the purity of the initial enzyme were varied, the enzymic activity of the immobilized preparations being controlled. After the immobilization of sufficiently large quantities of the enzyme (about 3 mg protein per m2 support) about 35% of the specific activity was retained. The maximum activity per unit weight of the support was observed for silicagels and silochromes with the mean diameter of pores 70-90 nm and the specific surface area about 70 m2/g. The use of purified urease produced highly active preparations of the immobilized enzyme (17,000 U per g dry support). Freeze-drying of the immobilized enzyme in the presence of sorbitol yielded dry preparations retaining their activity.  相似文献   

17.
Amberlite MB-1 was used to immobilize urease (EC.3.5.1.5). The thermal stability of the immobilized urease was better than that of the free urease. Its highest activity was obtained at 75?°C and at pH 6.5 while the optimum temperature for the free urease was found to be 25?°C. Urease immobilized on Amberlite MB-1 retained 65% of the original activity after 5 repeated uses and 62% of the activity after 60 days when stored at 4?°C.  相似文献   

18.
A feeding station is the area of forage a grazing animal can reach without moving its forefeet. Grazing behavior can be divided into residence within feeding stations (with bites as benefits) and movement between feeding stations (with steps as costs). However, relatively little information has been reported on how grazing animals modify their feeding station behavior seasonally and interannually in response to varying environmental conditions. The feeding station behavior of beef cows (Japanese Black) stocked on a tropical grass pasture (bahiagrass dominant) was monitored for 4 years (2010 to 2013) in order to investigate the association of feeding station behavior with meteorological and sward conditions across the seasons and years. Mean air temperature during stocking often exceeded 30°C during summer months. A severe summer drought in 2013 decreased herbage mass and sward height of the pasture and increased nitrogen concentration of herbage from summer to autumn. A markedly high feeding station number per unit foraging time, low bite numbers per feeding station and a low bite rate were observed in summer 2013 compared with the other seasons and years. Bite number per feeding station was explained by a multiple regression equation, where sward height and dry matter digestibility of herbage had a positive effect, whereas air temperature during stocking had a negative effect (R2=0.658, P<0.01). Feeding station number per minute was negatively correlated with bite number per feeding station (r=–0.838, P<0.001). It was interpreted that cows modified bite number per feeding station in response to the sward and meteorological conditions, and this largely determined the number of feeding stations the animals visited per minute. The results indicate potential value of bite number per feeding station as an indicator of daily intake in grazing animals, and an opportunity for livestock and pasture managers to control feeding station behavior of animals through managements (e.g. fertilizer application, manipulation of stocking intensity and stocking time within the day).  相似文献   

19.
碳添加下黑钙土胞内、胞外脲酶活性变化及其机制   总被引:1,自引:0,他引:1  
土壤脲酶作为能够催化尿素水解的最重要酶类,对草地生态系统氮素供应具有重要作用。目前探讨不同碳添加对草地土壤胞外脲酶影响的研究报道相对较多,但碳添加对土壤胞内脲酶的影响,以及胞内和胞外脲酶对碳添加的响应是否一致等尚需深入研究。本研究依托额尔古纳森林草原过渡带生态系统研究站开展的碳添加野外试验平台(以葡萄糖为碳源),选取无碳添加(C0)、250(C250)和500(C500) kg C·hm-2·a-1处理为供试对象,探讨碳添加下黑钙土胞内、胞外脲酶活性响应及其与土壤性质的关系。结果表明: 碳添加显著提高了土壤胞内脲酶活性,增加了土壤胞内脲酶活性占总脲酶活性的比例,但对土壤胞外脲酶活性没有显著影响。土壤胞内脲酶活性与微生物生物量具有显著正相关关系,表明胞内脲酶活性增加主要是由微生物生物量增加引起的。结构方程模型(SEM)分析表明,碳添加通过影响土壤微生物生物量间接提高了土壤胞内脲酶活性。  相似文献   

20.
The humification degree of fresh litter directly controls the accumulation of soil humus derived from plant litter, but very little information on this process is available. Planted forests are well known to restrict soil fertility, which is often indicated by the soil humus level. In this study, fresh litter was collected during different plant phenological stages during 2016 and 2017 in a mixed plantation in Southwest China. The values of hue coefficient ΔlogK (absorbance ratio of 400 nm and 600 nm on a logarithmic scale), optical density E4/E6 (absorbance ratio of 400 nm and 600 nm) and A600/C (absorbance at 600 mm per mg of carbon per ml of extraction) and the concentration of extractable humus carbon (HC) were determined in four litter components (foliar, twigs, reproductive organs and miscellaneous) of the dominant species (Pterocarya stenoptera, Quercus acutissima, Cunninghamia lanceolata and Toxicodendron vernicifluum). All of the litter components exhibited obvious humification characteristics, and showed the highest concentration of extractable HC during the leaf maturation period. The miscellaneous and foliar litters showed greater humification than the other litter types. The components of Pterocarya stenoptera litter exhibited greater degrees of humification than those of the other species, with lower ΔlogK and E4/E6 values and higher A600/C values. The litter from coniferous and evergreen species showed lower humification than that from broad-leaf and deciduous species regardless of the litter component examined. The present results provide new insights into the management of plantations and theoretical data to accurately improve the quality of plantations and maintain soil fertility under a global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号