首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Shia  P F Pilch 《Biochemistry》1983,22(4):717-721
In the presence of adenosine 5'-[gamma-32P]triphosphate ([gamma-32P]ATP) and a partially purified human placental insulin receptor preparation, insulin stimulates the phosphorylation of an Mr 94000 protein in a time- and dose-dependent manner. Half-maximal stimulation of 32P incorporation occurs at (2-3) X 10(-9) M insulin, a concentration identical with the Kd for insulin binding in this preparation. Immunoprecipitations with monoclonal anti-insulin receptor antibody demonstrate that the Mr 94000 protein kinase substrate is a component of the insulin receptor, the beta subunit. If the partially purified, soluble placental receptor preparation is immunoprecipitated and then exposed to [gamma-32P]ATP and insulin, phosphorylation of the Mr 94000 protein is maintained. The photoincorporation of 8-azido[alpha-32P]ATP into placental insulin receptor preparations was carried out to identify the ATP binding site responsible for the protein kinase activity. Photoincorporation into numerous proteins was observed, including both subunits of the insulin receptor. However, when photolabeling was performed in the presence of excess adenosine 5'-(beta, gamma-imidotriphosphate), a nonhydrolyzable ATP derivative, the beta subunit of the insulin receptor was the only species protected from label incorporation. These data indicate that the beta subunit of the insulin receptor has insulin-dependent protein kinase activity. Phosphotyrosine formation is the primary result of this activity in placental insulin receptor preparations.  相似文献   

2.
When a partially purified insulin receptor preparation immobilized on insulin-agarose is incubated with [gamma-32P]ATP, Mn2+, and Mg2+ ions, the receptor beta subunit becomes 32P-labeled. The 32P-labeling of the insulin receptor beta subunit is increased by 2-3-fold when src kinase is included in the phosphorylation reaction. In addition, the presence of src kinase results in the phosphorylation of a Mr = 125,000 species. The Mr = 93,000 receptor beta subunit and the Mr = 125,000 32P-labeled bands are absent when an insulin receptor-deficient sample, prepared by the inclusion of excess free insulin to inhibit the adsorption of the receptor to the insulin-agarose, is phosphorylated in the presence of the src kinase. These results indicate that the insulin receptor alpha and beta subunits are phosphorylated by the src kinase. The src kinase-catalyzed phosphorylation of the insulin receptor is not due to the activation of receptor autophosphorylation because a N-ethylmaleimide-treated receptor preparation devoid of receptor kinase activity is also phosphorylated by the src kinase. Conversely, the insulin receptor kinase does not catalyze phosphorylation of the active or N-ethylmaleimide-inactivated src kinase. Subsequent to src kinase-mediated tyrosine phosphorylation, the insulin receptor, either immobilized on insulin-agarose or in detergent extracts, exhibits a 2-fold increase in associated kinase activity using histone as substrate. src kinase mediates phosphorylation of predominantly tyrosine residues on both alpha and beta subunits of the insulin receptor. Tryptic peptide mapping of the 32P-labeled receptor alpha and beta subunits by high pressure liquid chromatography reveals that the src kinase-mediated phosphorylation sites on both receptor subunits exhibit elution profiles identical with those phosphorylated by the receptor kinase. Furthermore, the HPLC elution profile of the receptor auto- or src kinase-catalyzed phosphorylation sites on the receptor alpha subunit are also identical with that on the receptor beta subunit. These results indicate that: the src kinase catalyzes tyrosine phosphorylation of the insulin receptor alpha and beta subunits; and src kinase-catalyzed phosphorylation of insulin receptor can mimic the action of autophosphorylation to activate the insulin receptor kinase in vitro, although whether this occurs in intact cells remains to be determined.  相似文献   

3.
The ability of insulin to activate the insulin receptor protein kinase is shown to be completely dependent on prior beta subunit tyrosine autophosphorylation. Autophosphorylation in the presence of insulin is a highly concerted reaction; tryptic digestion of insulin receptor beta subunits derived from preparations whose kinase activation ranges from under 5% to 100% of maximal yields the same array of [32P]Tyr(P)-containing peptides over the entire range. Of special note is the significant contribution of multiply phosphorylated forms of tryptic peptides corresponding to proreceptor residues 1144-1152 (from the "tyrosine kinase" domain) and 1314-1329 (near the carboxyl terminus) to overall beta subunit phosphorylation at kinase activations of 5% and under. Thus, partially activated/autophosphorylated receptor preparations consist of mixtures of unactivated unphosphorylated receptors and activated fully (or nearly fully) phosphorylated receptors. The latter can be selectively removed by adsorption to antiphosphotyrosine antibodies. This abrupt multiple phosphorylation of individual receptor molecules explains why, in the presence of insulin, overall beta subunit tyrosine phosphorylation tracks closely with kinase, up to approximately 90% activation. Insulin stimulates phosphorylation into all domains (involving at least 6 of the 13 tyrosines on the intracellular portion of the beta subunit) but does not cause the appearance of "new" 32P-labeled species. Rather, insulin directs 32P incorporation preferentially into those domains most productive of kinase activation. Phosphorylation of the tyrosine residues at 1146, 1150, and 1151 correlates most closely with kinase activation. These residues show the largest 32P incorporation during rapid kinase activation; moreover, in comparisons of receptors with similar overall autophosphorylation but very different activations (or similar activations but different extents of autophosphorylation), achieved by omitting insulin or varying [ATP], the phosphorylation of peptide 1144-1152 tracks closely with kinase activation, and phosphorylation of sites and Mr 4000-5000 tryptic peptide (presumably Tyr 953 and/or 960) tract nearly as well. By contrast the extent of phosphorylation of the carboxy-terminal peptide is frequently dissociated from the extent of kinase activation. Phosphorylation of this latter domain probably underlies a beta subunit function other than tyrosine kinase activity.  相似文献   

4.
Phosphorylation of the insulin receptor by casein kinase I   总被引:1,自引:0,他引:1  
Insulin receptor was examined as a substrate for the multipotential protein kinase casein kinase I. Casein kinase I phosphorylated partially purified insulin receptor from human placenta as shown by immunoprecipitation of the complex with antiserum to the insulin receptor. Analysis of the phosphorylated complex by polyacrylamide gel electrophoresis under nonreducing conditions showed a major phosphorylated band at the position of the alpha 2 beta 2 complex. When the phosphorylated receptor was analyzed on polyacrylamide gels under reducing conditions, two phosphorylated bands, Mr 95,000 and Mr 135,000, were observed which corresponded to the alpha and beta subunits. The majority of the phosphate was associated with the beta subunit with minor phosphorylation of the alpha subunit. Phosphoamino acid analysis revealed that casein kinase I phosphorylated only seryl residues. The autophosphorylated alpha 2 beta 2 receptor purified by affinity chromatography on immobilized O-phosphotyrosyl binding antibody was also a substrate for casein kinase I. Reduction of the phosphorylated alpha 2 beta 2 receptor indicated that casein kinase I incorporated phosphate into seryl residues only in the beta subunit.  相似文献   

5.
D O Morgan  K Jarnagin  R A Roth 《Biochemistry》1986,25(19):5560-5564
The receptor for insulin-like growth factor I (IGF-I) was purified from the rat liver cell line BRL-3A by a combination monoclonal anti-receptor antibody column and a wheat germ agglutinin column. Analyses of these receptor preparations on reduced sodium dodecyl sulfate-polyacrylamide gels yielded protein bands of Mr 136K (alpha subunit) and Mr 85K and 94K (beta subunit). These receptor preparations bound 5 times more IGF-I than insulin, and the binding of both labeled ligands was more potently inhibited by unlabeled IGF-I than by insulin. These results indicate that these receptor preparations contained predominantly the IGF-I receptor. This highly purified receptor preparation was found to possess an intrinsic kinase activity; autophosphorylation of the receptor beta subunit was stimulated by low concentrations of IGF-I (half-maximal stimulation at 0.4 nM IGF-I). Twentyfold higher concentrations of insulin were required to give comparable levels of stimulation. A monoclonal antibody that inhibits the insulin receptor kinase was found to inhibit the IGF-I receptor kinase with the same potency with which it inhibits the insulin receptor. In contrast, monoclonal antibodies to other parts of the insulin receptor only poorly recognized the IGF-I receptor. A comparison of V8 protease digests of the insulin and IGF-I receptors again revealed some similarities and also some differences in the structures of these two receptors. Thus, the IGF-I receptor is structurally, antigenically, and functionally similar to but not identical with the insulin receptor.  相似文献   

6.
Insulin causes rapid phosphorylation of the beta subunit (Mr = 95,000) of its receptor in broken cell preparations. This occurs on tyrosine residues and is due to activation of a protein kinase which is contained in the receptor itself. In the intact cell, insulin also stimulates the phosphorylation of the receptor and other cellular proteins on serine and threonine residues. In an attempt to find a protein that might link the receptor tyrosine kinase to these serine/threonine phosphorylation reactions, we have studied the interaction of a partially purified preparation of insulin receptor with purified preparations of serine/threonine kinases known to phosphorylate glycogen synthase. No insulin-dependent phosphorylation was observed when casein kinases I and II, phosphorylase kinase, or glycogen synthase kinase 3 was incubated in vitro with the insulin receptor. These kinases also failed to phosphorylate the receptor. By contrast, the insulin receptor kinase catalyzed the phosphorylation of the calmodulin-dependent kinase and addition of insulin in vitro resulted in a 40% increase in this phosphorylation. In the presence of calmodulin-dependent kinase and the insulin receptor kinase, insulin also stimulated the phosphorylation of calmodulin. Phosphoamino acid analysis showed an increase of phosphotyrosine content in both calmodulin and calmodulin-dependent protein kinase. These data suggest that the insulin receptor kinase may interact directly and specifically with the calmodulin-dependent kinase and calmodulin. Further studies will be required to determine if these phosphorylations modify the action of these regulatory proteins.  相似文献   

7.
L J Sweet  P A Wilden  J E Pessin 《Biochemistry》1986,25(22):7068-7074
The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing (0.1% SDS) or nondenaturing (0.1% Triton X-100) conditions. Pretreatment of 32P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the alpha 2 beta 2 insulin receptor complex (Mr 400,000) into the monomeric 95,000 beta subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the alpha 2 beta 2 heterotetrameric complex with essentially no alpha beta heterodimeric or free monomeric beta subunit species present. This suggests that the insulin receptor can reoxidize into the Mr 400,000 complex after the removal of DTT by gel filtration chromatography. Surprisingly, these apparently reoxidized insulin receptors were also observed to be functional with respect to insulin binding, albeit with a 50% decrease in affinity for insulin and insulin stimulation of the beta subunit autophosphorylation. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT followed by incubation with excess N-ethylmaleimide prior to gel filtration chromatography in 0.1% Triton X-100. Under these conditions the insulin receptors migrated as the Mr 400,000 alpha 2 beta 2 complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Regulation of the insulin receptor kinase by hyperinsulinism   总被引:3,自引:0,他引:3  
A murine fibroblast cell line transfected with human insulin receptor cDNA, NIH 3T3 HIR3.5, was observed to display insulin-induced down-regulation of insulin-binding activity in a time- and concentration-dependent manner. Maximal inhibition of insulin-binding activity (54%) occurred within 16 h of exposure to 100 nM insulin in vivo, where in vivo refers to intact cells in tissue culture. The decrease in cellular insulin-binding activity was the consequence of a decrease in the number of cell-associated insulin receptors as determined by Scatchard analysis of insulin binding, 125I-insulin affinity cross-linking, and Western blotting of the insulin receptor beta subunit. Acute insulin treatment in vivo (1-60 min) resulted in the activation of the insulin receptor protein tyrosine kinase as determined by in vitro phosphorylation of glutamic acid:tyrosine (4:1), where in vitro refers to broken cell preparations. This acute in vivo insulin activation of the insulin receptor tyrosine kinase resulted in a greater stimulation (1.4-1.9-fold) of tyrosine kinase activity in the glutamic acid:tyrosine (4:1) assay than the maximal stimulation produced by insulin treatment in vitro. In contrast, long term (24 h) insulin treatment in vivo resulted in a 50-70% decrease in intrinsic protein tyrosine kinase activity of the insulin receptors compared with that of acutely activated (1 min) insulin receptors. Under these conditions, the insulin receptor protein kinase activity remained insulin independent in the in vitro substrate kinase assay. Surprisingly, the insulin-independent activated (1 min in vivo insulin-treated) and uncoupled (24 h in vivo insulin-treated) insulin receptors displayed similar stoichiometries of 32P incorporation into the beta subunit by in vitro autophosphorylation when compared with the control insulin receptors, ranging from 1.5 to 1.8 mol of phosphate incorporated/mol of insulin receptor. Phosphoamino acid analysis demonstrated that the phosphoserine/phosphothreonine content of in vivo 32P-labeled insulin receptors increased markedly within a 1-h exposure to insulin in vivo, whereas insulin-induced receptor desensitization was not apparent until 10-24 h after exposure to insulin. These data suggest that insulin treatment in vivo results initially in the activation of the insulin receptor kinase followed by a subsequent uncoupling of protein kinase activity. This insulin-induced desensitization of the insulin receptor kinase does not correlate with the extent of beta subunit serine/threonine phosphorylation.  相似文献   

9.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

10.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

11.
Insulin-like growth factor (IGF)-I receptor purified from human placental membranes as previously described (LeBon, T. R., Jacobs, S., Cuatrecasas, P., Kathuria, S., and Fujita-Yamaguchi, Y. (1986) J. Biol. Chem. 261, 7685-7689) was characterized. The IGF-I receptor was similar to the insulin receptor with respect to subunit structure (beta-alpha-alpha-beta), apparent sizes of deglycosylated alpha (Mr = approximately 88,000) and beta (Mr = approximately 67,000) subunits, and amino acid composition of the subunits. Monoclonal antibody specific to each receptor recognized its own receptor whereas polyclonal anti-human insulin receptor antibody cross-reacted with the IGF-I receptor, indicating that the receptors share one or more antigenic sites. Further characterization of the purified IGF-I receptor tyrosine-protein kinase activity indicated that by analogy with the insulin receptor the monomeric alpha beta form of the IGF-I receptor appears to have higher kinase activity than the intact receptor in the alpha 2 beta 2 form. The most significant difference between the two receptors was found in the N-terminal amino acid sequences of their alpha subunits, which apparently show 60% identity. The IGF-I receptor alpha subunit lacks residues corresponding to the N-terminal 4 amino acids of the insulin receptor alpha subunit. These results provide the first direct proof that the IGF-I receptor is a molecule distinct from the insulin receptor despite numerous similarities.  相似文献   

12.
The insulin receptor is an insulin-activated, tyrosine-specific protein kinase. Previous studies have shown that autophosphorylation of tyrosine residues on the Mr 95,000 is associated with an activation of the protein kinase activity toward exogenous protein substrates. We have employed the highly purified insulin receptor, immobilized on insulin-Sepharose or eluted in an active form, to define the metal/ATP requirements for kinase activation, the relationship of receptor autophosphorylation to activation, and the kinetic properties of the autophosphorylated, activated receptor kinase. Prior incubation of the immobilized receptor with 2 mM ATP, 10 mM Mg (or 10 mM Mn), followed by removal of these reactants, served to abolish the upward curvilinearity in the rate of histone 2b (tyrosine) phosphorylation measured subsequently. This treatment also markedly increased the rate of histone 2b phosphorylation as compared to that observed with the unmodified, immobilized receptor, as estimated under conditions that per se minimized further activation. The extents of maximal activation of receptor histone 2b (tyrosine) kinase obtained on preincubation with MgATP or MnATP are identical; however, the affinity of the receptor for MnATP is approximately 10-fold higher than that for MgATP. The higher affinity of the receptor for MnATP is observed for both autophosphorylation/autoactivation and histone 2b tyrosine kinase activity (Km MnATP approximately 0.01 mM; Km MgATP approximately 0.1 mM). Autophosphorylation/autoactivation per se does not significantly alter the apparent affinity for MeATP (or protein substrate, as previously reported) but increases Vmax. Activation of receptor histone 2b (tyrosine) kinase is due to tyrosine-specific autophosphorylation of the Mr 95,000 (beta) subunit; thus the extent of total 32P incorporation into the beta subunit correlates precisely with the extent of kinase activation, both over time and at a wide variety of Me2+ ATP concentrations. Sequential treatment of the autophosphorylated receptor with elastase and trypsin yields a single, basically charged 32P-peptide, Mr less than 2000. The functional properties of the unphosphorylated and fully phosphorylated receptor were compared after elution from insulin-Sepharose. The insulin binding characteristics of the two forms of the receptor were indistinguishable; the kinase properties differed greatly; whereas the histone 2b activity of the unphosphorylated receptor was low in the basal state, and activated 10-fold by insulin, the fully autophosphorylated receptor exhibits maximal histone 2b kinase in the basal state and is unaffected by insulin addition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Insulin receptors from chicken liver and brain were studied following alterations in the nutritional state. Chickens were either fasted for 48 h, fasted for 48 h and then refed for 24 h, or fed a regular diet ad libitum. 125I-Porcine insulin binding was significantly elevated in liver membranes from the fasted animals and lowered in refed chickens when compared to preparations from ad libitum fed chickens. These changes in 125I-insulin binding were inversely related to the levels of plasma insulin and since receptor affinities for insulin were similar in each group, they probably represent alterations in receptor number. Apparent Mr of alpha subunits of the insulin receptors was unaffected by alterations in the nutritional states. The presence of ATPase-like activities that co-eluted with liver insulin receptors from wheat germ agglutinin lectin columns but not from pea lectin columns necessitated the use of both pea and wheat germ agglutinin for liver insulin receptor purification. The insulin receptors purified from both lectin columns were recognized by anti-insulin receptor antiserum and had similar affinities for insulin which were unaltered by the nutritional state. Insulin-stimulatable autophosphorylation of the beta subunit of the insulin receptor was lower in livers from fasted chickens and intermediate in refed chickens. Furthermore, basal and insulin-induced phosphorylation of the artificial substrate poly(Glu,Tyr) 4:1 was significantly less in the fasting state and intermediate in the refed state compared to the ad libitum fed state. Insulin sensitivity (measured as the dose of insulin required for 50% maximal stimulation of kinase activity) was similar in all three states suggesting that the differences in insulin-induced phosphorylation are due to a change in maximal stimulation and not a change in insulin sensitivity. In contrast to the alterations seen with liver receptors, brain insulin receptors were unaffected by these alterations in nutritional state. These findings suggest that: liver insulin receptors are affected by altering the nutritional state; insulin binding to liver membranes is inversely related to plasma insulin levels; and tyrosine kinase is decreased both in fasted and refed animals suggesting an uncoupling of the normal interaction between alpha subunit and beta subunit in liver insulin receptors.  相似文献   

14.
Insulin-like growth factor I (IGF-I) receptors are partially purified from human placenta by sequential affinity chromatography with wheat germ agglutinin-agarose and agarose derivatized with an IGF-I analog. Adsorption specificity to this affinity matrix demonstrates that low coupling ratios of IGF-I analog to agarose yield preparations that are highly selective in purifying IGF-I receptor with minimal cross-contamination by the insulin receptor present in the same placental extracts. Incubation of the immobilized IGF-I receptor preparation with [gamma-32P]ATP results in a marked phosphorylation of the receptor beta subunits, which appear as a doublet of Mr = 93,000 and 95,000 upon electrophoresis on dodecyl sulfate-polyacrylamide gels. The 32P-labeled receptor beta subunit doublet contains predominantly phosphotyrosine and to a much lesser extent phosphoserine and phosphothreonine residues. The immobilized IGF-I receptor preparation exhibits tyrosine kinase activity toward exogenous histone. The characteristics of the IGF-I receptor-associated tyrosine kinase are remarkably similar to those of the insulin receptor kinase. Thus, prior phosphorylation of the immobilized IGF-I receptor preparation with increasing concentrations of unlabeled ATP followed by washing to remove the unreacted ATP results in a progressive activation of the receptor-associated histone kinase activity. A maximal (10-fold) activation is achieved between 0.25 and 1 mM ATP. The concentration of ATP required for half-maximal (30 microM) activation of the IGF-I receptor kinase is similar to that of the insulin receptor kinase. Like the insulin receptor kinase, the elevated kinase activity of the phosphorylated IGF-I receptor is reversed following dephosphorylation of the receptor beta subunit with alkaline phosphatase. Furthermore, the phosphorylation of the IGF-I receptor beta subunit doublet is enhanced by 7-8-fold when reductant is included in the reaction medium, as is observed for the insulin receptor kinase. Significantly, the dose responses of both receptor types to reductant are identical. Both of the 32P-labeled IGF-I receptor beta subunit bands are resolved into six matching phosphopeptide fractions when the corresponding tryptic hydrolysates are resolved by reverse phase high pressure liquid chromatography. Significantly, four out of the six phosphopeptide fractions derived from the trypsinized IGF-I receptor beta subunits are chromatographically identical to those from the tryptic hydrolysates of 32P-labeled insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
K T Yu  J E Pessin  M P Czech 《Biochimie》1985,67(10-11):1081-1093
The regulation of the insulin receptor kinase by phosphorylation and dephosphorylation has been examined. Under in vitro conditions, the tyrosine kinase activity of the insulin receptor toward histone is markedly activated when the receptor either undergoes autophosphorylation or is phosphorylated by a purified preparation of src tyrosine kinase on tyrosine residues of its beta subunit. The elevated kinase activity of the phosphorylated insulin receptor is readily reversed when the receptor is dephosphorylated with alkaline phosphatase. Analysis of tryptic digests of phosphorylated insulin receptor using reverse-phase high pressure liquid chromatography suggests that phosphorylation of a specific tyrosine site on the receptor beta subunit may be involved in the mechanism of the receptor kinase activation. Further studies indicate that tyrosine phosphorylation-mediated increase in insulin receptor activity also occurs in intact cells. Thus, when the histone kinase activities of insulin receptor from control and insulin-treated H-35 hepatoma cells are assayed in vitro following the purification of the receptors under conditions which preserve the phosphorylation state of the receptors, the insulin receptors extracted from insulin-treated cells exhibit histone kinase activities 100% higher than those from control cells. The elevated receptor kinase activity from insulin-treated cells appears to result from the increase in phosphotyrosine content of the receptor. Taken together, these results indicate that tyrosine phosphorylation of the insulin receptor beta subunit exerts a major stimulatory effect on the kinase activity of the receptor. Insulin receptor partially purified by specific immunoprecipitation from detergent extracts of control and isoproterenol-treated cells have similar basal but diminished insulin-stimulated beta subunit autophosphorylation activities when incubated with [gamma-32 P]ATP. Similarly, the ability of insulin to stimulate the receptor beta subunit phosphorylation in intact isoproterenol-treated adipocytes is greatly attenuated, whereas, the basal phosphorylation of the insulin receptor is slightly increased by the beta-catecholamine. These data indicate that in rat adipocytes, a cyclic AMP-mediated mechanism, possibly through serine and threonine phosphorylation of the receptor or its regulatory components, may uncouple the receptor tyrosine kinase activity from activation by insulin. Treatment of 32P-labeled H-35 hepatoma cells with phorbol myristate acetate (PMA) results in a marked increase in serine phosphorylation of the insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Subunit structure and dynamics of the insulin receptor   总被引:3,自引:0,他引:3  
A model for the minimum subunit composition and stiochiometry of the physiologically relevant insulin receptor has been deduced based on results obtained by affinity labeling of this receptor in a variety of cell types and species. We propose that the receptor is a symmetrical disulfide-linked heterotetramer composed of two alpha (apparent Mr = 125,000) and two beta (apparent Mr = 90,000) glycoprotein subunits in the configuration (beta-S-S-alpha)-S-S-(alpha-S-S-beta). The disulfide or disulfides linking the two (alpha-S-S-beta) halves (class I disulfides) exhibit greater sensitivity to reduction by exogenous reductants than those linking the alpha and beta subunits (class II disulfides). When the class I disulfides are reduced by addition of diothiothreitol to intact cells, the receptor retains its ability to bind insulin and to effect a biological response. The beta subunit contains a site at about the center of its amino acid sequence that is extremely sensitive to proteolytic cleavage by elastaselike proteases, yielding a beta 1 fragment (Mr = 45,000) that remains disulfide linked to the receptor complex and a free beta 2 fragment. Binding of insulin to the receptor complex appears to result in the formation or stabilization of a new receptor conformation as evidenced by an altered susceptibility of the alpha subunit to exogenous trypsin. A receptor structure with high affinity for insulinlike growth factor (IGF) I and low affinity for insulin in fibroblast and placental membranes has also been affinity labeled. It exhibits the same structural features found for the insulin receptor, including two classes of disulfide bridges and beta subunits highly sensitive to proteolytic cleavage. These recent observations identifying the presence of distinct insulin and IGF-I receptors that share similar complex structures suggest that these hormones may also share common mechanisms of transmembrane signaling.  相似文献   

17.
Sodium vanadate activates "in vitro" insulin receptor autophosphorylation and protein tyrosine kinase in a dose-dependent manner. Insulin receptor protein tyrosine kinase is directly activated also by the anti-insulin receptor beta subunit monoclonal antibody 18-44. We previously demonstrated that the anti-insulin receptor monoclonal antibody MA-10 decreases insulin-stimulated receptor protein tyrosine kinase activity "in vitro", without inhibiting insulin receptor binding. In this report we show that insulin receptor protein tyrosine kinase, activated by sodium vanadate or by monoclonal antibody 18-44, is inhibited by MA-10 antibody. These data suggest that insulin receptor protein tyrosine kinase activity can be either activated and inhibited through mechanisms different from insulin binding.  相似文献   

18.
Three peptides were synthesized corresponding to potential autophosphorylation sites of the beta subunit of the human insulin receptor. These were peptide 1150 corresponding to amino acids 1142-1153 of the pro-receptor, peptide 960 corresponding to amino acids 952-961 of the proreceptor, and peptide 1316 corresponding to amino acids 1313-1329 of the proreceptor. Peptide 1150 served as a better substrate for the insulin receptor tyrosine protein kinase than either of the other peptides or than the Src peptide (corresponding to the sequence surrounding the autophosphorylation site at Tyr-416). Microsequencing of the phosphorylated peptide 1150 indicated that Tyr-1150 rather than Tyr-1146 or Tyr-1151 was phosphorylated in the in vitro reaction. The insulin receptor was then isolated from 32P-labeled IM-9 cells that had been exposed to insulin. Tryptic digestion of the beta subunit revealed one peptide whose phosphorylation was dependent upon insulin and occurred exclusively on Tyr. This peptide was selectively immunoprecipitated by an antipeptide antibody directed to the Tyr-1150-containing sequence. We conclude that Tyr-1150 is preferentially phosphorylated by the purified receptor kinase and that one of the autophosphorylation reactions elicited by insulin in intact cells occurs in a sequence that contains this residue.  相似文献   

19.
A soybean phospholipid mixture produced a concentration-dependent enhancement of beta subunit autophosphorylation of the detergent-soluble, purified human placental insulin receptor. Although phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine also increased insulin receptor autophosphorylation, only phosphatidylinositol (PtdIns) stimulated to a similar extent as the phospholipid mixture. The effect of PtdIns was biphasic, stimulating at low concentrations (75 microM), but having no stimulatory effect at high concentrations (1.0 mM). Phospholipids also stimulated the exogenous protein kinase activity of the insulin receptor toward histone H2B. Phosphorylation of PtdIns occurred with these purified insulin receptor preparations, but this activity was insulin-independent, and the turnover number for PtdIns phosphorylation in the presence of soybean phospholipid was 1/220th as small as the turnover number for the autophosphorylating activity. These results suggest that although PtdIns can modulate the activity of the insulin receptor kinase, PtdIns phosphorylation itself is not directly involved in this regulation.  相似文献   

20.
Myristyl and palmityl acylation of the insulin receptor   总被引:18,自引:0,他引:18  
The presence of covalently bound fatty acids in the insulin receptor has been explored in cultured human (IM-9) lymphocytes. Both alpha (Mr = 135,000) and beta (Mr = 95,000) subunits of the receptor incorporate [3H]myristic and [3H]palmitic acids in a covalent form. The effects of alkali and hydroxylamine on the labeled subunits indicate the existence of two different kinds of fatty acid linkage to the protein with chemical stabilities compatible with amide and ester bonds. The alpha subunit contains only amide-linked fatty acid while the beta subunit has both amide- and ester-linked fatty acids. Analysis by high performance liquid chromatography after acid hydrolysis of the [3H]myristate- and [3H]palmitate-labeled subunits demonstrates the fatty acid nature of the label. Furthermore, both [3H]myristic and [3H]palmitic acids are found attached to the receptor subunits regardless of which fatty acid was used for labeling. The incorporation of fatty acids into the insulin receptor is dependent on protein synthesis and is also detectable in the Mr = 190,000 proreceptor form. Fatty acylation is a newly identified post-translational modification of the insulin receptor which may have an important role in its interaction with the membrane and/or its biological function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号