首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.  相似文献   

2.
3.
Pattern recognition receptors (PRRs), e.g. toll receptors (TLRs) that bind ligands within the microbiome have been implicated in the pathogenesis of cancer. LPS is a ligand for two TLR family members, TLR4 and RP105 which mediate LPS signaling in B cell proliferation and migration. Although LPS/TLR/RP105 signaling is well-studied; our understanding of the underlying molecular mechanisms controlling these PRR signaling pathways remains incomplete. Previous studies have demonstrated a role for PTEN/PI-3K signaling in B cell selection and survival, however a role for PTEN/PI-3K in TLR4/RP105/LPS signaling in the B cell compartment has not been reported. Herein, we crossed a CD19cre and PTENfl/fl mouse to generate a conditional PTEN knockout mouse in the CD19+ B cell compartment. These mice were further crossed with an IL-14α transgenic mouse to study the combined effect of PTEN deletion, PI-3K inhibition and expression of IL-14α (a cytokine originally identified as a B cell growth factor) in CD19+ B cell lymphoproliferation and response to LPS stimulation. Targeted deletion of PTEN and directed expression of IL-14α in the CD19+ B cell compartment (IL-14+PTEN-/-) lead to marked splenomegaly and altered spleen morphology at baseline due to expansion of marginal zone B cells, a phenotype that was exaggerated by treatment with the B cell mitogen and TLR4/RP105 ligand, LPS. Moreover, LPS stimulation of CD19+ cells isolated from these mice display increased proliferation, augmented AKT and NFκB activation as well as increased expression of c-myc and cyclinD1. Interestingly, treatment of LPS treated IL-14+PTEN-/- mice with a pan PI-3K inhibitor, SF1126, reduced splenomegaly, cell proliferation, c-myc and cyclin D1 expression in the CD19+ B cell compartment and normalized the splenic histopathologic architecture. These findings provide the direct evidence that PTEN and PI-3K inhibitors control TLR4/RP105/LPS signaling in the CD19+ B cell compartment and that pan PI-3 kinase inhibitors reverse the lymphoproliferative phenotype in vivo.  相似文献   

4.
5.
6.
7.
The rat liver microsomal enzyme CTP: phosphatidate cytidylyltransferase (EC 2.7.7.41) which catalyzes the formation of CDP-diacylglycerol has been found to be markedly stimulated by GTP. The requirement for GTP is absolute, the novel GTP analogues such as guanosine 5′-[β,γ-methylene]-triphosphate, guanosine 5′-[α,β-methylene]-triphosphate, guanosine 5′-[β,γ-imido]-triphosphate and guanosine 3′-diphosphate 5′-diphosphate are without significant effect. Maximal stimulation occurs at 1 mM GTP. ATP at a concentration of 5 mM totally inhibits the formation of CDP-diacylglycerol even in the presence of optimal GTP concentration. Analogues of ATP such as adenosine 5′-[α,β-methylene]-triphosphate, adenosine 5′-[β,γ-methylene]-triphosphate and adenosine 5′-[β,γ-imido]-triphosphate are without effect on the reaction. The addition of fluoride (8 mM) likewise abolishes the stimulatory effect of GTP.  相似文献   

8.
“Phosphoinositide” refers to phosphorylated forms of phosphatidylinositol, including phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. Both of these molecules could be in vivo substrates of plant phospholipase C. These phosphoinositides can also be biologically active “per se,” by directly binding to proteins and thus altering their location and/or activity. The use of pharmacological agents in Arabidopsis suspension cells allowed us to identify genes whose expression was positively or negatively controlled, in the basal state, by products of phosphoinositide-dependent phospholipase C. In this basal state, it seems that no genes exhibit a phosphoinositide-dependent expression “per se.” However, many genes whose expression is altered in the presence of phospholipase C inhibitors appeared to be responsive to salicylic acid. This allowed us to show that salicylic acid acts both by increasing the phosphoinositide pool and by inhibiting the phospholipase C. In response to salicylic acid it is possible to identify genes whose expression is controlled by products of PI-PLC, but also genes whose expression is controlled by phosphoinositides “per se.” Our data highlight the importance of phosphoinositide-dependent pathways in gene expression in resting cells and in response to phytohormones.  相似文献   

9.
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.  相似文献   

10.
11.
c-Fes plays pivotal roles in angiogenic cellular responses of endothelial cells. Here we examined the role of c-Fes in vascular endothelial growth factor-A (VEGF-A)-mediated signaling pathways in endothelial cells. We introduced either wild-type or kinase-inactive c-Fes in porcine aortic endothelial (PAE) cell lines, which endogenously express VEGF receptor (VEGFR)-1, and PAE cells ectopically expressing VEGFR-2 (denoted KDR/PAE cells) and generated stable cell lines. VEGF-A induced autophosphorylation of c-Fes only in KDR/PAE cells, suggesting that VEGFR-2 was required for its activation. Expression of kinase-inactive c-Fes failed to demonstrate dominant negative effect on VEGF-A-induced chemotaxis and capillary morphogenesis. Phosphoinositide 3-kinase (PI3-kinase) was activated in KDR/PAE cells and c-Fes contributed to this process in a kinase activity-dependent manner. However, VEGFR-2, insulin receptor substrate-1, and c-Src were also involved in VEGF-A-induced activation of PI3-kinase, resulting in the compensation in cells expressing kinase-inactive c-Fes. Interestingly, overexpression of wild-type c-Fes in PAE cells induced VEGF-A-independent capillary morphogenesis. Considered collectively, VEGF-A activated PI3-kinase partly through c-Fes and increase in c-Fes kinase activity enhanced capillary morphogenesis by yet unknown signaling pathways.  相似文献   

12.
Lipid phosphates initiate key signaling cascades in cell activation. Lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are produced by activated platelets. LPA is also formed from circulating lysophosphatidylcholine by autotaxin, a protein involved tumor progression and metastasis. Extracellular LPA and S1P stimulate families of G-protein coupled receptors that elicit diverse responses. LPA is involved in wound repair and tumor growth. Exogenous S1P is a potent stimulator of angiogenesis, a process vital in development, tissue repair and the growth of aggressive tumors. Inside the cell, phosphatidate (PA), ceramide 1-phosphate (C1P), LPA, and S1P act as signaling molecules with distinct functions including the stimulation of cell division, cytoskeletal rearrangement, Ca(2+) transients, and membrane movement. These observations imply that phosphatases that degrade lipid phosphates on the cell surface, or inside the cell, regulate cell signaling under physiological and pathological conditions. This occurs through attenuation of signaling by the lipid phosphates and by the production of bioactive products (diacylglycerol, ceramide, and sphingosine). Three lipid phosphate phosphatases (LPPs) and a splice variant dephosphorylate LPA, PA, CIP, and S1P. Two S1P phosphatases (SPPs) act specifically on S1P. In addition, there is family of four LPP-related proteins (LPRs, or plasticity-related genes, PRGs). PRG-1 expression in neurons has been reported to increase extracellular LPA breakdown and attenuate LPA-induced axonal retraction. It is unclear whether the LRPs dephosphorylate LPA directly, stimulate LPP activity, or bind LPA and S1P. Also, the importance of extra- versus intra-cellular actions of the LPPs and SPPs, and the individual roles of different isoforms is not firmly established. Understanding the functions and regulation of the LPPs, SPPs and related proteins will hopefully contribute to interventions to correct dysfunctions in conditions such as wound repair, inflammation, angiogenesis, tumor growth, and metastasis.  相似文献   

13.
14.
The cellular prion protein (PrP(C)) is thought to be involved in protection against cell death, however the exact cellular mechanisms involved are still controversial. Herein we present data that strongly indicate a functional link between PrP(C) expression and phosphatidylinositol 3-kinase (PI 3-kinase) activation, a protein kinase that plays a pivotal role in cell survival. Both mouse neuroblastoma N2a cells and immortalized murine hippocampal neuronal cell lines expressing wild-type PrP(C) had significantly higher PI 3-kinase activity levels than their respective controls. Moreover, PI 3-kinase activity was found to be elevated in brain lysates from wild-type mice, as compared to prion protein-knockout mice. Recruitment of PI 3-kinase by PrP(C) was shown to contribute to cellular survival toward oxidative stress by using 3-morpholinosydnonimine (SIN-1) and serum deprivation. Moreover, both PI 3-kinase activation and cytoprotection by PrP(C) appeared to rely on copper binding to the N-terminal octapeptide of PrP(C). Thus, we propose a model in which the interaction of copper(II) with the N-terminal domain of PrP(C) enables transduction of a signal to PI 3-kinase; the latter, in turn, mediates downstream regulation of cell survival.  相似文献   

15.
ABSTRACT

Allicin is a natural product suppressing the progression of gastric carcinoma (GC). In the current study, the mechanism underlying the anti-GC effect of allicin was explored by focusing on the role of miR-383-5p/ERBB4 signaling. Two GC cell lines were treated with allicin and the effects on viability, apoptosis, migration, invasion, and miR-383-5p/ERBB4 activity in the cells were assessed. The interaction between allicin and miR-383-5p was further explored by inhibiting the miR-383-5p level. Allicin suppressed cell viability and induced apoptosis in both GC cell lines. The compound also inhibited migration and invasion of GC cells, which was associated with the up-regulation miR-383-5p and down-regulation of ERBB4. The inhibition of miR-383-5p by specific inhibitor blocked the anti-GC effect of allicin. Our results demonstrated that allicin contributed to the suppressed growth and metastasis potentials in GC cell lines. The effect was accompanied by an increased level of miR-383-5p and subsequent inhibition of ERBB4.  相似文献   

16.
Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-β-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme–product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.  相似文献   

17.
Numerous studies have recently focused on the anticarcinogenic, antimutagenic, or chemopreventive activities of the main pungent component of red pepper, capsaicin (N-vanillyl-8-methyl-1-nonenamide). We have previously shown that, in the androgen-independent prostate cancer PC-3 cells, capsaicin inhibits cell growth and induces apoptosis through reactive oxygen species (ROS) generation [Apoptosis 11 (2006) 89–99]. In the present study, we investigated the signaling pathways involved in the antiproliferative effect of capsaicin. Here, we report that capsaicin apoptotic effect was mediated by ceramide generation which occurred by sphingomyelin hydrolysis. Using siRNA, we demonstrated that N-SMase expression is required for the effect of capsaicin on prostate cell viability. We then investigated the role of MAP kinase cascades, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK, in the antiproliferative effect of capsaicin, and we confirmed that capsaicin could activate ERK and JNK but not p38 MAPK. Pharmacological inhibition of JNK kinase, as well as inhibition of ROS by the reducing agent N-acetylcysteine, prevented ceramide accumulation and capsaicin-induced cell death. However, inhibition of ceramide accumulation by the SMase inhibitor D609 did not modify JNK activation. These data reveal JNK as an upstream regulator of ceramide production. Capsaicin-promoted activation of ERK was prevented with all the inhibitors tested. We conclude that capsaicin induces apoptosis in PC-3 cells via ROS generation, JNK activation, ceramide accumulation, and second, ERK activation.  相似文献   

18.
The glucose transporter 4 (GLUT4) is responsible for glucose uptake in the skeletal muscle. Insulin-induced translocation of GLUT4 to the plasma membrane requires phosphatidylinositol 3-kinase activation-mediated generation of phosphatidylinositol 3,4,5-trisphosphate PIP(3) and subsequent activation of Akt. Previous studies suggested that skeletal muscle and kidney enriched inositol polyphosphate phosphatase (SKIP) has negative effects on the regulation of insulin signaling in the skeletal muscle cells. Here, we compared its effects on insulin signaling by selective inhibition of SKIP, SHIP2, and phosphatase and tensin homologue on chromosome 10 (PTEN) by short interfering RNA in the C2C12 myoblast cells. Suppression of SKIP significantly increased the insulin-stimulated phosphatidylinositol 3,4,5-trisphosphate levels and Akt phosphorylation. Furthermore, silencing of SKIP, but not of PTEN, increased the insulin-dependent recruitment of GLUT4 vesicles to the plasma membrane. Taken together, these results imply that SKIP negatively regulates insulin signaling and glucose uptake by inhibiting GLUT4 docking and/or fusion to the plasma membrane.  相似文献   

19.
W. Tischer  H. Strotmann 《BBA》1977,460(1):113-125
The binding of radioactively labelled atrazin, metribuzin and phenmedipham by broken chloroplasts was studied. From the double-reciprocal plots (bound vs. free inhibitors) a high affinity binding reaction is graphically isolated which is related to the inhibition of photosynthetic electron transport. It is concluded that the specific binding sites correspond to the electron carrier molecules which are attacked by the inhibitors. The relative concentration of specific binding sites is 1 per 300–500 chlorophyll molecules.The binding of the labelled substances is competitively inhibited by each of the indicated unlabelled substances, by DCMU and by several pyridazinone derivatives. These results suggest that triazines, triazinones, pyridazinones, biscarbamates and phenylureas interfere with the same electron carrier of the photosynthetic electron transport chain, according to the same molecular mechanism.  相似文献   

20.
The effects of wortmannin and LY294002, specific inhibitors of phosphoinositide-3-kinase, on the shape, locomotive behavior, and glucose chemotaxis were studied using the Physarum polycephalum plasmodium, a multinuclear amoeboid cell with the self-oscillatory mode of locomotive behavior. Both inhibitors were shown to cause a reduction in the plasmodium frontal edge and a decrease in the efficiency of mass transfer during migration. They also suppressed the chemotaxis towards glucose and eliminated the characteristic changes in self-oscillatory behavior normally observed in response to the treatment of the whole plasmodium with glucose. The manifestation of these effects depended on the inhibitor concentration, treatment duration, and size of plasmodium. The involvement of phosphoinositide-3-kinase in formation of the frontal edge and control of P. polycephalum plasmodium chemotaxis suggests that the correlation of polar shape and directional movement of amoeboid cells with the distribution of phosphoinositides in the plasma membrane has a universal nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号