共查询到20条相似文献,搜索用时 15 毫秒
1.
H Konishi H Matsuzaki H Takaishi T Yamamoto M Fukunaga Y Ono U Kikkawa 《Biochemical and biophysical research communications》1999,264(3):840-846
H(2)O(2)-induced apoptosis was enhanced in the CHO cell line overproducing protein kinase C delta (PKCdelta) as judged by DNA fragmentation. In response to the H(2)O(2) treatment, PKCdelta was tyrosine phosphorylated and recovered as a constitutively active form, but its proteolytic fragment was not generated. In contrast, H(2)O(2)-induced apoptosis was suppressed in the CHO cell line overexpressing protein kinase B alpha (PKBalpha). Consistently, phosphorylation of BAD, a pro-apoptotic protein negatively regulated by PKBalpha, was sustained in the cells overproducing PKBalpha, but was not changed in the cells overexpressing PKCdelta. In the CHO cell line overproducing both PKCdelta and PKBalpha, H(2)O(2)-induced tyrosine phosphorylation of PKCdelta was suppressed, and DNA fragmentation was diminished concomitantly. These results suggest that PKCdelta contributes to H(2)O(2)-induced apoptosis by a mechanism independent of BAD and that PKCdelta is a target of PKB for the regulation of cell survival. 相似文献
2.
Aoki N Ueno S Mano H Yamasaki S Shiota M Miyazaki H Yamaguchi-Aoki Y Matsuda T Ullrich A 《The Journal of biological chemistry》2004,279(11):10765-10775
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase in a phosphotyrosine-dependent manner. The interaction between the two proteins involved the Tec SH2 domain and the C-terminal tyrosine residues Tyr-281, Tyr-303, Tyr-354, and Tyr-381 of PTP20, which were also necessary for tyrosine phosphorylation/dephosphorylation. Association between endogenous PTP20 and Tec was also tyrosine phosphorylation-dependent in the immature B cell line Ramos. Finally, the Tyr-281 residue of PTP20 was shown to be critical for deactivating Tec in Ramos cells upon B cell receptor ligation as well as dephosphorylation and deactivation of Tec and PTP20 itself in transfected COS7 cells. Taken together, PTP20 appears to play a negative role in Tec-mediated signaling, and Tec-PTP20 interaction might represent a negative feedback mechanism. 相似文献
3.
4.
Acute (10-30 min) treatment of intact rat hepatoma (Fao) cells with H2O2, inhibits in vivo protein tyrosine phosphatase activity. Vanadate markedly potentiates this effect although it has only trivial effects of its own. Here we show that H2O2 inhibits a protein tyrosine phosphatase activity, but not a p-nitro phenyl phosphate hydrolysing activity, in cytosolic extracts of these cells. This effect is completely reversed by 10 mM dithiothreitol. Other oxidants have similar inhibitory effects. Vanadate inhibits the protein tyrosine phosphatase activity in vitro, and its effects are additive with those of H2O2. These findings suggest that H2O2 and vanadate interact with the protein tyrosine phosphatases at two independent sites. They also suggest that in intact cells H2O2 has a direct inhibitory effect on protein tyrosine phosphatase activity and an indirect effect of facilitating the entry of vanadate. 相似文献
5.
Belisario MA Tafuri S Di Domenico C Squillacioti C Della Morte R Lucisano A Staiano N 《Biochimica et biophysica acta》2000,1495(2):183-193
Platelets represent a target of reactive oxygen species produced under oxidative stress conditions. Controversial data on the effect of these species on platelet functions have been reported so far. In this study we evaluated the effect of a wide range of H(2)O(2) concentrations on platelet adhesion to immobilized fibrinogen and on pp72(syk) and pp125(FAK) tyrosine phosphorylation. Our results demonstrate that: (1) H(2)O(2) does not affect the adhesion of unstimulated or apyrase-treated platelets to immobilized fibrinogen; (2) H(2)O(2) does not affect pp72(syk) phosphorylation induced by platelet adhesion to fibrinogen-coated dishes; (3) H(2)O(2) reduces, in a dose-dependent fashion, pp125(FAK) phosphorylation of fibrinogen-adherent platelets; (4) concentrations of H(2)O(2) near to physiological values (10-12 microM) are able to strengthen the subthreshold activation of pp125(FAK) induced by epinephrine in apyrase-treated platelets; (5) H(2)O(2) doses higher than 0.1 mM inhibit ADP-induced platelet aggregation and dense granule secretion. The ability of H(2)O(2) to modulate pp125(FAK) phosphorylation suggests a role of this molecule in physiological hemostasis as well as in thrombus generation. 相似文献
6.
The insulinomimetic agents H2O2 and vanadate stimulate protein tyrosine phosphorylation in intact cells 总被引:16,自引:0,他引:16
H2O2 and vanadate are known insulinomimetic agents. Together they induce insulin's bioeffects with a potency which exceeds that seen with insulin, vanadate, or H2O2 alone. Employing Western blotting with anti-P-Tyr antibodies, we have identified in Fao cells at least four proteins (pp180, 150, 114, and 100) whose P-Tyr content is rapidly increased upon treatment of the cells with 3 mM H2O2. Tyrosine phosphorylation of these and additional proteins was markedly potentiated (6-10-fold) when 100 microM sodium orthovanadate was added together with H2O2. The effects of H2O2 and vanadate on protein tyrosine phosphorylation were rapid and specific. The enhanced tyrosine phosphorylation was accompanied by a concomitant inhibition of a cytosolic protein tyrosine phosphatase activity. The latter was inhibited by 50% in 3 mM H2O2-treated cells. The inhibitory effect was augmented in the combined presence of H2O2 and vanadate. Half- and maximal effects of vanadate were obtained at 15 microM and 1 mM, respectively. Vanadate (1 mM) alone, added to the cells, had only a trivial effect on protein tyrosine phosphatase activity. A 45-s challenge with insulin (10(-7) M) of cells pretreated with H2O2 largely mimicked the potentiating effects of vanadate on protein tyrosine phosphorylation but not on protein tyrosine phosphatase activity. Our results suggest the involvement of multiple tyrosine-phosphorylation proteins in mediating the biological effects of H2O2/vanadate. Their enhanced phosphorylation can be attributed at least in part, to the inhibitory effects exerted by H2O2 alone, or in combination with vanadate, on protein tyrosine phosphatase activity. The similarity between proteins phosphorylated in Fao cells in response to H2O2/vanadate or H2O2/insulin, suggests that either treatment stimulates protein tyrosine kinases having similar substrate specificities. The insulin receptor kinase is a likely candidate as its activity is markedly enhanced either by insulin (plus H2O2) or by H2O2/vanadate. 相似文献
7.
We have now found that the most potent, Cpd 5 [2-(2-mercaptoethanol)-3-methyl-1, 4-napthoquinone], inhibits growth of doxorubicin-resistant and doxorubicin-sensitive breast cancer cells (MCF 7r and MCF 7w) in culture. Growth inhibition by Cpd 5 was antagonized by the thiol antioxidants glutathione and cysteine, but not by catalase or superoxide dismutase, suggesting that growth inhibition is probably via conjugation of cellular thiols. In support of this, we found that Cpd 5 inhibited the activity of thiol containing cellular protein tyrosine phosphatase (PTP) enzyme, with consequent induction of various tyrosine phosphoproteins, but not serine or tyrosine phosphoproteins. The tyrosine phosphorylation was also inhibited by exogenous glutathione or cysteine and could be enhanced by depletion of cellular glutathione by BSO. This effect of Cpd 5 on protein tyrosine phosphorylation was highly selective, however. Tyrosine phosphorylation of EGF-R, Erb-B2, and ERK1/2 was increased, but not that of Insulin-R or JNK. ERK1/2 tyrosine phosphorylation and growth inhibition increased with increasing concentrations of Cpd 5. Furthermore, suppression of Cpd 5-mediated ERK1/2 phosphorylation by an ERK-kinase inhibitor antagonized growth inhibition. These results suggest a strong correlation between ERK1/2 phosphorylation by Cpd 5 and growth inhibition. This novel K-vitamin analog thus inhibits MCF 7 cell growth and induces selective protein tyrosine phosphorylation. 相似文献
8.
Lipid raft targeting of hematopoietic protein tyrosine phosphatase by protein kinase C theta-mediated phosphorylation 下载免费PDF全文
Nika K Charvet C Williams S Tautz L Bruckner S Rahmouni S Bottini N Schoenberger SP Baier G Altman A Mustelin T 《Molecular and cellular biology》2006,26(5):1806-1816
Protein kinase C theta (PKC theta) is unique among PKC isozymes in its translocation to the center of the immune synapse in T cells and its unique downstream signaling. Here we show that the hematopoietic protein tyrosine phosphatase (HePTP) also accumulates in the immune synapse in a PKC theta-dependent manner upon antigen recognition by T cells and is phosphorylated by PKC theta at Ser-225, which is required for lipid raft translocation. Immune synapse translocation was completely absent in antigen-specific T cells from PKC theta-/- mice. In intact T cells, HePTP-S225A enhanced T-cell receptor (TCR)-induced NFAT/AP-1 transactivation, while the acidic substitution mutant was as efficient as wild-type HePTP. We conclude that HePTP is phosphorylated in the immune synapse by PKC theta and thereby targeted to lipid rafts to temper TCR signaling. This represents a novel mechanism for the active immune synapse recruitment and activation of a phosphatase in TCR signaling. 相似文献
9.
10.
H2O2-mediated permeability II: importance of tyrosine phosphatase and kinase activity 总被引:1,自引:0,他引:1
Kevil Christopher G.; Okayama Naotsuka; Alexander J. Steven 《American journal of physiology. Cell physiology》2001,281(6):C1940
We previously reportedthat exposure of endothelial cells to H2O2results in a loss of cell-cell apposition and increased endothelialsolute permeability. The purpose of this study was to determine howtyrosine phosphorylation and tyrosine phosphatases contribute tooxidant-mediated disorganization of endothelial cell junctions. Wefound that H2O2 caused a rapid decrease in total cellular phosphatase activity that facilitates a compensatory increase in cellular phosphotyrosine residues.H2O2 exposure also results in increasedendothelial monolayer permeability, which was attenuated by pp60, aninhibitor of src kinase. Inhibition of protein tyrosinephosphatase activity by phenylarsine oxide (PAO) demonstrated a similarpermeability profile compared with H2O2,suggesting that tyrosine phosphatase activity is important inmaintaining a normal endothelial solute barrier. Immunofluorescence shows that H2O2 exposure caused a loss ofpan-reactive cadherin and -catenin from cell junctions that was notblocked by the src kinase inhibitor PP1.H2O2 also caused -catenin to dissociate fromthe endothelial cytoskeleton, which was not prevented by PP1. Finally,we determined that PP1 did not prevent cadherin internalization. Thesedata suggest that oxidants like H2O2 produce biological effects through protein phosphotyrosine modifications bydecreasing total cellular phosphatase activity combined with increasedsrc kinase activity, resulting in increased endothelial solute permeability. 相似文献
11.
Laurie E. Hastie Wayne F. Patton Herbert B. Hechtman David Shepro 《Journal of cellular physiology》1997,172(3):373-381
Hypoxia/reoxygenation injury in vitro causes endothelial cell cytoskeletal rearrangement that is related to increased monolayer permeability. Nonmuscle filamin (ABP-280) promotes orthogonal branching of F-actin and links microfilaments to membrane glycoproteins. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) for 1–60 min, with or without modulators of cAMP-dependent second-messenger pathways, and evaluated for changes in filamin distribution, cAMP levels, and the formation of gaps at interendothelial junctions. Filamin translocates from the membrane-cytoskeletal interface to the cytosol within 1 min of exposure to H2O2. This is associated with a decrease in endothelial cell cAMP levels from 83 pmoles/mg protein to 15 pmoles/mg protein. Intercellular gaps form 15 min after H2O2 treatment and progressively increase in number and diameter through 60 min. Both filamin redistribution and actin redistribution are associated with decreased phosphorylation of filamin and are prevented by activation of the cAMP-dependent protein kinase pathway. A synthetic peptide corresponding to filamin's C-terminal, cAMP-dependent, protein kinase phosphorylation site effectively induces filamin translocation and intercellular gap formation, which suggests that decreased phosphorylation of filamin at this site causes filamin redistribution and destabilization of junctions. These data indicate that H2O2-induced filamin redistribution and interendothelial cell gap formation result from inhibition of the cAMP-dependent protein kinase pathway. J. Cell. Physiol. 172:373–381, 1997. © 1997 Wiley-Liss, Inc. 相似文献
12.
Insulin stimulates tyrosine phosphorylation and inactivation of protein-tyrosine phosphatase 1B in vivo 总被引:7,自引:0,他引:7
Protein-tyrosine phosphatase (PTP) 1B has been implicated in negative regulation of insulin action, although little is known of the ability of insulin to regulate PTP1B itself. The ability of insulin to regulate phosphorylation and activation of PTP1B was probed in vivo. Challenge with insulin in vivo provoked a transient, sharp increase in the phosphotyrosine content of PTP1B in fat and skeletal muscle that peaked within 15 min. Insulin stimulated a decline of 60--70% in PTP1B activity. In mouse adipocytes, the inhibition of PTP1B activity and increased tyrosine phosphorylation of the enzyme were blocked by the insulin receptor tyrosine kinase inhibitor AG1024. Phosphoserine content of PTP1B declined in response to insulin stimulation. Elevation of intracellular cyclic AMP provokes a sharp increase in PTP1B activity and leads to increased phosphorylation of serine residues and decreased tyrosine phosphorylation. Suppression of cyclic AMP levels or inhibition of protein kinase A leads to a sharp decline in PTP1B activity, a decrease in phosphoserine content, and an increase in PTP1B phosphotyrosine content. PTP1B appears to be a critical point for insulin and catecholamine counter-regulation. 相似文献
13.
Choi SL Kim SJ Lee KT Kim J Mu J Birnbaum MJ Soo Kim S Ha J 《Biochemical and biophysical research communications》2001,285(1):92-97
We previously cloned recA-homolog genes from a basidiomycete, Coprinus cinereus, and obtained the recombinant proteins (Nara et al., Mol. Gen. Genet. 262, 781-789, 1999, see Ref. 1; Nara and Sakaguchi, Biochem. Biophys. Res. Commun. 275, 97-102, 2000, see Ref. 2). The primary purpose of the present study was to characterize the biochemical properties of the recombinant LIM15/DMC1 (CoLIM15) and RAD51 (CoRAD51) proteins. We purified the recombinant proteins, and their molecular masses were 37 and 35 kDa, respectively. Both enzymes showed DNA-dependent ATPase activity and ATP-dependent strand exchange reaction in vitro. CoRad51 was a five- to sixfold stronger DNA-dependent ATPase and showed greater dependency on single-stranded DNA than CoLim15. In meiosis, both enzymes were highly accumulated in the meiotic tissue at leptotene and zygotene stages at which the homologous chromosomes pair, but disappeared just before the pachytene stage at which they recombine. From these and the previously reported results, we discuss here the relationships between the enzymes and meiosis. 相似文献
14.
Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase 总被引:5,自引:0,他引:5
The protein-tyrosine phosphatase SHP-1 has been shown to be a negative regulator of multiple signaling pathways in hematopoietic cells. In this study, we demonstrate that SHP-1 dephosphorylates the lymphoid-specific Src family kinase Lck at Tyr-394 when both are transiently co-expressed in nonlymphoid cells. We also demonstrate that a GST-SHP-1 fusion protein specifically dephosphorylates Lck at Tyr-394 in vitro. Because phosphorylation of Tyr-394 activates Lck, the fact that SHP-1 specifically dephosphorylates this site suggests that SHP-1 is a negative regulator of Lck. The failure of SHP-1 to inactivate Lck may contribute to some of the lymphoid abnormalities observed in motheaten mice. 相似文献
15.
Christophe Blanquart 《Biochemical and biophysical research communications》2010,392(1):83-19380
The protein tyrosine phosphatase-1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) have been implicated in down-regulation of tyrosine kinase receptors, conferring anti-oncogenic functions to these PTPases. However, recent work has shown that PTP1B is positively implicated in oncogenic properties of breast cancer cells by regulating the ERK pathway. Here, we studied the function of PTP1B and TC-PTP in IGF-2-induced growth, survival and migration of MCF-7 breast cancer cells. Using siRNA, we showed that reduction in the expression of these PTPases decreased cell growth and ERK phosphorylation. Reduction in the expression of these PTPases did not impair IGF-2 effects on cell survival to acute treatment with 4-OH Tamoxifen. In contrast, IGF-2-induced MCF-7 cell migration was markedly impaired by reduction of PTP1B or TC-PTP expression, independently of the ERK pathway. This novel finding reinforces the potential role of these PTPases as therapeutic targets for treatment of breast cancer. 相似文献
16.
Mitogen-activated protein kinases modulate H(2)O(2)-induced apoptosis in primary rat alveolar epithelial cells 总被引:11,自引:0,他引:11
Carvalho H Evelson P Sigaud S González-Flecha B 《Journal of cellular biochemistry》2004,92(3):502-513
Increasing evidence suggests a role for apoptosis in the maintenance of the alveolar epithelium under normal and pathological conditions. However, the signaling pathways modulating alveolar type II (ATII) cell apoptosis remain poorly defined. Here we investigated the role of MAPKs as modulators of oxidant-mediated ATII cell apoptosis using in vitro models of H(2)O(2)-stress. H(2)O(2), delivered either as a bolus or as a flux, lead to time- and concentration-dependent increases in ATII cells apoptosis. Increased apoptosis in primary rat ATII cells was detected at H(2)O(2) concentrations and production rates in the physiological range (1 microM) and peaked at 100 microM H(2)O(2). Immortalized rat lung epithelial cells (RLE), in contrast, required millimolar concentration of H(2)O(2) for maximal responses. H(2)O(2)-induced apoptosis was preceded by rapid activation of all three classes of mitogen-activated protein kinases (MAPKs): ERK, JNK, and p38. Specific inhibition of JNK using antisense oligonucleotides and ERK and p38 using PD98059 or SB202190, respectively, indicated a pro-apoptotic role for JNK pathway and an anti-apoptotic role for ERK- and p38-initiated signaling events. Our data show that the balance between the activation of JNK, ERK, and p38 is a critical determinant of cell fate, suggesting that pharmacological interventions on the MAPK pathways may be useful in the treatment of oxidant-related lung injury. 相似文献
17.
Mikko Ylilauri Elina Mattila Elisa M. Nurminen Jarmo Käpylä Sanna P. Niinivehmas Juha A. Määttä Ulla Pentikäinen Johanna Ivaska Olli T. Pentikäinen 《Biochimica et Biophysica Acta - Proteins and Proteomics》2013,1834(10):1988-1997
T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation. By combining several molecular modeling and biochemical techniques, we demonstrate that α1-peptide and mitoxantrone activate TCPTP via direct binding to the catalytic domain, whereas spermidine does not interact with the catalytic domain of TCPTP in vitro. Furthermore, we have identified a hydrophobic groove surrounded by negatively charged residues on the surface of TCPTP as a putative binding site for the α1-peptide and mitoxantrone. Importantly, these data have allowed us to identify a new molecule that binds to TCPTP, but interestingly cannot activate its phosphatase activity. Accordingly, we describe here mechanism of TCPTP activation by mitoxantrone, the cytoplasmic tail of α1-integrin, and a mitoxantrone-like molecule at the atomic level. These data provide invaluable insight into the development of novel TCPTP activators, and may facilitate the rational discovery of small-molecule cancer therapeutics. 相似文献
18.
Saberi B Shinohara M Ybanez MD Hanawa N Gaarde WA Kaplowitz N Han D 《American journal of physiology. Cell physiology》2008,295(1):C50-C63
Recent studies have suggested that, in certain cases, necrosis, like apoptosis, may be programmed, involving the activation and inhibition of many signaling pathways. In this study, we examined whether necrosis induced by H(2)O(2) is regulated by signaling pathways in primary hepatocytes. A detailed time course revealed that H(2)O(2) treated to hepatocytes is consumed within minutes, but hepatocytes undergo necrosis several hours later. Thus, H(2)O(2) treatment induces a "lag phase" where signaling changes occur, including PKC activation, Akt (PKB) downregulation, activation of JNK, and downregulation of AMP-activated kinase (AMPK). Investigation of various inhibitors demonstrated that PKC inhibitors were effective in reducing necrosis caused by H(2)O(2) (~80%). PKC inhibitor treatment decreased PKC activity but, surprisingly, also upregulated Akt and AMPK, suggesting that various PKC isoforms negatively regulate Akt and AMPK. Akt did not appear to play a significant role in H(2)O(2)-induced necrosis, since PKC inhibitor treatment protected hepatocytes from H(2)O(2) even when Akt was inhibited. On the other hand, compound C, a selective AMPK inhibitor, abrogated the protective effect of PKC inhibitors against necrosis induced by H(2)O(2). Furthermore, AMPK activators protected against H(2)O(2)-induced necrosis, suggesting that much of the protective effect of PKC inhibition was mediated through the upregulation of AMPK. Work with PKC inhibitors suggested that atypical PKC downregulates AMPK in response to H(2)O(2). Knockdown of PKC-alpha using antisense oligonucleotides also slightly protected (~22%) against H(2)O(2). Taken together, our data demonstrate that the modulation of signaling pathways involving PKC and AMPK can alter H(2)O(2)-induced necrosis, suggesting that a signaling "program" is important in mediating H(2)O(2)-induced necrosis in primary hepatocytes. 相似文献
19.
Takayasu Kobayashi Kazuyuki Kusuda Motoko Ohnishi Hong Wang Shoko Ikeda Masahito Hanada Yuchio Yanagawa Shinri Tamura 《FEBS letters》1998,430(3)
Of the six distinct isoforms of mouse protein phosphatase 2C (PP2C) (α, β-1, β-2, β-3, β-4 and β-5), PP2Cα was specifically phosphorylated on the serine residue(s) when expressed in COS7 cells. Analysis of phosphorylation sites using site-directed mutagenesis demonstrated that Ser-375 and/or Ser-377 were phosphorylated in vivo. These serine residues were the sites of phosphorylation by casein kinase II in vitro. Phosphorylation of PP2Cα was enhanced two-fold by the addition of okadaic acid to the culture medium, but addition of cyclosporin A had no such effect. These results suggest that the expressed PP2Cα is phosphorylated by a casein kinase II-like protein kinase and dephosphorylated by PP1 and/or PP2A in COS7 cells. 相似文献
20.
H(2)O(2)-induced O(2) production by a non-phagocytic NAD(P)H oxidase causes oxidant injury 总被引:5,自引:0,他引:5
Li WG Miller FJ Zhang HJ Spitz DR Oberley LW Weintraub NL 《The Journal of biological chemistry》2001,276(31):29251-29256
Non-phagocytic NAD(P)H oxidases have been implicated as major sources of reactive oxygen species in blood vessels. These oxidases can be activated by cytokines, thereby generating O(2), which is subsequently converted to H(2)O(2) and other oxidant species. The oxidants, in turn, act as important second messengers in cell signaling cascades. We hypothesized that reactive oxygen species, themselves, can activate the non-phagocytic NAD(P)H oxidases in vascular cells to induce oxidant production and, consequently, cellular injury. The current report demonstrates that exogenous exposure of non-phagocytic cell types of vascular origin (smooth muscle cells and fibroblasts) to H(2)O(2) activates these cell types to produce O(2) via an NAD(P)H oxidase. The ensuing endogenous production of O(2) contributes significantly to vascular cell injury following exposure to H(2)O(2). These results suggest the existence of a feed-forward mechanism, whereby reactive oxygen species such as H(2)O(2) can activate NAD(P)H oxidases in non-phagocytic cells to produce additional oxidant species, thereby amplifying the vascular injury process. Moreover, these findings implicate the non-phagocytic NAD(P)H oxidase as a novel therapeutic target for the amelioration of the biological effects of chronic oxidant stress. 相似文献