首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that human Cdc14A phosphatase interacts with interphase centrosomes, and that this interaction is independent of microtubules and Cdc14A phosphatase activity, but requires active nuclear export. Disrupting the nuclear export signal (NES) led to Cdc14A being localized in nucleoli, which in unperturbed cells selectively contain Cdc14B (ref. 1). Conditional overproduction of Cdc14A, but not its phosphatase-dead or NES-deficient mutants, or Cdc14B, resulted in premature centrosome splitting and formation of supernumerary mitotic spindles. In contrast, downregulation of endogenous Cdc14A by short inhibitory RNA duplexes (siRNA) induced mitotic defects including impaired centrosome separation and failure to undergo productive cytokinesis. Consequently, both overexpression and downregulation of Cdc14A caused aberrant chromosome partitioning into daughter cells. These results indicate that Cdc14A is a physiological regulator of the centrosome duplication cycle, which, when disrupted, can lead to genomic instability in mammalian cells.  相似文献   

2.
Sister chromatid segregation in anaphase of mitosis is initiated through cleavage of cohesin by the protease separase. Two studies now show that this view is valid for most chromosomal DNA, but not for the highly repetitive ribosomal DNA (rDNA) and telomeres. The disjunction of these regions of the chromosome occurs in mid-anaphase, long after cohesin cleavage, and is regulated by the conserved phosphatase Cdc14.  相似文献   

3.
In order to transmit a full genetic complement cells must ensure that all chromosomes are accurately split and distributed during anaphase. Chromosome XII in S. cerevisiae contains the site of nucleolar assembly, a 1-2Mb array of rDNA genes named RDN1. Cdc14p is a conserved phosphatase, essential for anaphase progression and mitotic exit, which is kept inactive at the nucleolus until mitosis. In early anaphase, the FEAR network (Cdc Fourteen Early Anaphase Release) promotes the transient and partial release of Cdc14p from the nucleolus. The putative role of Cdc14p released by the FEAR network is thought to be the stimulation of full Cdc14p release by activation of the GTPase-driven signaling cascade (the Mitotic Exit Network or MEN) that ensures mitotic exit. Here, we show that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome. Nucleolar segregation occurs during mid-anaphase and coincides with the FEAR release of Cdc14p. Inactivation of FEAR delays nucleolar segregation until late anaphase, demonstrating that one function of the FEAR network is to promote segregation of repetitive nucleolar chromatin during mid-anaphase.  相似文献   

4.
In yeast, the protein phosphatase Cdc14 promotes chromosome segregation, mitotic exit, and cytokinesis by reversing M-phase phosphorylations catalyzed by Cdk1. A key feature of Cdc14 regulation is its sequestration within the nucleolus, which restricts its access to potential substrates for much of the cell cycle. Mammals also possess a nucleolar Cdc14 homolog, termed Cdc14B, but its roles during mitosis and cell division remain speculative. Here we analyze Cdc14B’s subcellular dynamics during mitosis and rigorously test its functional contributions to cell division through homozygous disruption of the Cdc14B locus in human somatic cells. While Cdc14B is initially released from nucleoli at the start of mitosis, the phosphatase quickly redistributes onto segregating sister chromatids during anaphase. This relocalization is mainly driven by Cdk1 inactivation, as pharmacologic inhibition of Cdk1 in prometaphase cells redirects Cdc14B onto chromosomes. However, in sharp contrast to yeast cdc14 mutants, human Cdc14BΔ/Δ cells were viable and lacked defects in spindle assembly, anaphase progression, mitotic exit, and cytokinesis, and continued to segregate ribosomal DNA repeats with near-normal proficiency. Our findings reveal substantial divergence in mitotic regulation between yeast and mammalian cells, as the latter possess efficient mechanisms for completing late M-phase events in the absence of a nucleolar Cdc14-related phosphatase.  相似文献   

5.
In budding yeast, the Cdc14p phosphatase activates mitotic exit by dephosphorylation of specific cyclin-dependent kinase (Cdk) substrates and seems to be regulated by sequestration in the nucleolus until its release in mitosis. Herein, we have analyzed the two human homologs of Cdc14p, hCdc14A and hCdc14B. We demonstrate that the human Cdc14A phosphatase is selective for Cdk substrates in vitro and that although the protein abundance and intrinsic phosphatase activity of hCdc14A and B vary modestly during the cell cycle, their localization is cell cycle regulated. hCdc14A dynamically localizes to interphase but not mitotic centrosomes, and hCdc14B localizes to the interphase nucleolus. These distinct patterns of localization suggest that each isoform of human Cdc14 likely regulates separate cell cycle events. In addition, hCdc14A overexpression induces the loss of the pericentriolar markers pericentrin and gamma-tubulin from centrosomes. Overproduction of hCdc14A also causes mitotic spindle and chromosome segregation defects, defective karyokinesis, and a failure to complete cytokinesis. Thus, the hCdc14A phosphatase appears to play a role in the regulation of the centrosome cycle, mitosis, and cytokinesis, thereby influencing chromosome partitioning and genomic stability in human cells.  相似文献   

6.
During meiosis, DNA replication is followed by 2 successive chromosome segregation events, resulting in the production of gametes with a haploid number of chromosomes from a diploid precursor cell. Faithful chromosome segregation in meiosis requires that sister chromatid cohesion is lost from chromosome arms during meiosis I, but retained at centromeric regions until meiosis II. Recent studies have begun to uncover the mechanisms underlying this stepwise loss of cohesion in meiosis and the role of a conserved protein, shugoshin, in regulating this process.  相似文献   

7.
8.
9.
The spindle assembly checkpoint (SAC) monitors attachment to microtubules and tension on chromosomes in mitosis and meiosis. It represents a surveillance mechanism that halts cells in M-phase in the presence of unattached chromosomes, associated with accumulation of checkpoint components, in particular, Mad2, at the kinetochores. A complex between the anaphase promoting factor/cylosome (APC/C), its accessory protein Cdc20 and proteins of the SAC renders APC/C inactive, usually until all chromosomes are properly assembled at the spindle equator (chromosome congression) and under tension from spindle fibres. Upon release from the SAC the APC/C can target proteins like cyclin B and securin for degradation by the proteasome. Securin degradation causes activation of separase proteolytic enzyme, and in mitosis cleavage of cohesin proteins at the centromeres and arms of sister chromatids. In meiosis I only the cohesin proteins at the sister chromatid arms are cleaved. This requires meiosis specific components and tight regulation by kinase and phosphatase activities. There is no S-phase between meiotic divisions. Second meiosis resembles mitosis. Mammalian oocytes arrest constitutively at metaphase II in presence of aligned chromosomes, which is due to the activity of the cytostatic factor (CSF). The SAC has been identified in spermatogenesis and oogenesis, but gender-differences may contribute to sex-specific differential responses to aneugens. The age-related reduction in expression of components of the SAC in mammalian oocytes may act synergistically with spindle and other cell organelles' dysfunction, and a partial loss of cohesion between sister chromatids to predispose oocytes to errors in chromosome segregation. This might affect dose-response to aneugens. In view of the tendency to have children at advanced maternal ages it appears relevant to pursue studies on consequences of ageing on the susceptibility of human oocytes to the induction of meiotic error by aneugens and establish models to assess risks to human health by environmental exposures.  相似文献   

10.
Survivin is a novel member of the inhibitor of apoptosis gene family that bear baculoviral IAP repeats (BIRs), whose physiological roles in regulating meiotic cell cycle need to be determined. Confocal microscopy was employed to observe the localization of survivin in rat oocytes. At the germinal vesicle (GV) stage, survivin was mainly concentrated in the GV. At the prometaphase I (pro-MI) and metaphase I (MI) stage, survivin was mainly localized at the kinetochores, with a light staining detected on the chromosomes. After transition to anaphase I or telophase I stage, survivin migrated to the midbody, and signals on the kinetochores and chromosomes disappeared. At metaphase II (MII) stage, survivin became mainly localized at the kinetochores again. Microinjection of oocytes with anti-survivin antibodies at the beginning of the meiosis, thus blocking the normal function of survivin, resulted in abnormal spindle assembly, chromosome segregation and first polar body emission. These results suggest that survivin is involved in regulating the meiotic cell cycle in rat oocytes.  相似文献   

11.
The completion of chromosome segregation during anaphase requires the hypercondensation of the ~1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Δ cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.  相似文献   

12.
Mammalian oocyte maturation is distinguished by highly asymmetric meiotic divisions during which a haploid female gamete is produced and almost all the cytoplasm is maintained in the egg for embryo development. Actin-dependent meiosis I spindle positioning to the cortex induces the formation of a polarized actin cap and oocyte polarity, and it determines asymmetric divisions resulting in two polar bodies. Here we investigate the functions of Cdc42 in oocyte meiotic maturation by oocyte-specific deletion of Cdc42 through Cre-loxP conditional knockout technology. We find that Cdc42 deletion causes female infertility in mice. Cdc42 deletion has little effect on meiotic spindle organization and migration to the cortex but inhibits polar body emission, although homologous chromosome segregation occurs. The failure of cytokinesis is due to the loss of polarized Arp2/3 accumulation and actin cap formation; thus the defective contract ring. In addition, we correlate active Cdc42 dynamics with its function during polar body emission and find a relationship between Cdc42 and polarity, as well as polar body emission, in mouse oocytes.  相似文献   

13.
14.
Upon prolonged activation of the spindle assembly checkpoint, cells escape from mitosis through a mechanism called adaptation or mitotic slippage, which is thought to underlie the resistance of cancer cells to antimitotic drugs. We show that, in budding yeast, this mechanism depends on known essential and nonessential regulators of mitotic exit, such as the Cdc14 early anaphase release (FEAR) pathway for the release of the Cdc14 phosphatase from the nucleolus in early anaphase. Moreover, the RSC (remodel the structure of chromatin) chromatin-remodeling complex bound to its accessory subunit Rsc2 is involved in this process as a novel component of the FEAR pathway. We show that Rsc2 interacts physically with the polo kinase Cdc5 and is required for timely phosphorylation of the Cdc14 inhibitor Net1, which is important to free Cdc14 in the active form. Our data suggest that fine-tuning regulators of mitotic exit have important functions during mitotic progression in cells treated with microtubule poisons and might be promising targets for cancer treatment.  相似文献   

15.
16.
17.
18.
D'Amours D  Stegmeier F  Amon A 《Cell》2004,117(4):455-469
Chromosome segregation is triggered by the cleavage of cohesins by separase. Here we show that in budding yeast separation of the ribosomal DNA (rDNA) and telomeres also requires Cdc14, a protein phosphatase known for its role in mitotic exit. Cdc14 shares this role with the FEAR network, which activates Cdc14 during early anaphase, but not the mitotic exit network, which promotes Cdc14 activity during late anaphase. We further show that CDC14 is necessary and sufficient to promote condensin enrichment at the rDNA locus and to trigger rDNA segregation in a condensin-dependent manner. We propose that Cdc14 released by the FEAR network mediates the partitioning of rDNA by facilitating the localization of condensin thereto. This dual role of the FEAR network in initiating mitotic exit and promoting chromosome segregation ensures that exit from mitosis is coupled to the completion of chromosome segregation.  相似文献   

19.
During meiosis, two consecutive nuclear divisions follow a single round of deoxyribonucleic acid replication. In meiosis I, homologues are segregated, whereas in meiosis II, sister chromatids are segregated. This requires that the sequential assembly and dissolution of specialized chromosomal factors are coordinated with two rounds of spindle assembly and disassembly. How these events are coupled is unknown. In this paper, we show, in budding yeast, that the protein phosphatase 2A regulatory subunit Cdc55 couples the loss of linkages between chromosomes with nuclear division by restraining two other phosphatases, Cdc14 and PP2A(Rts1). Cdc55 maintains Cdc14 sequestration in the nucleolus during early meiosis, and this is essential for the assembly of the meiosis I spindle but not for chromosomes to separate. Cdc55 also limits the formation of PP2A holocomplexes containing the alternative regulatory subunit Rts1, which is crucial for the timely dissolution of sister chromatid cohesion. Therefore, Cdc55 orders passage through the meiotic divisions by ensuring a balance of phosphatases.  相似文献   

20.
Budding yeast Cdc14 phosphatase plays essential roles in mitotic exit. Cdc14 is sequestered in the nucleolus by its inhibitor Net1/Cfi1 and is only released from the nucleolus during anaphase to inactivate mitotic CDK. It is believed that the mitotic exit network (MEN) is required for the release of Cdc14 from the nucleolus because liberation of Cdc14 by net1/cfi1 mutations bypasses the essential role of the MEN. But how the MEN residing at the spindle pole body (SPB) controls the association of Cdc14 with Net1/Cfi1 in the nucleolus is not yet understood. We found that Cdc14-5GFP was released from the nucleolus in the MEN mutants (tem1, cdc15, dbf2, and nud1), but not in the cdc5 cells during early anaphase. The Cdc14 liberation from the nucleolus was inhibited by the Mad2 checkpoint and by the Bub2 checkpoint in a different manner when microtubule organization was disrupted. We observed Cdc14-5GFP at the SPB in addition to the nucleolus. The SPB localization of Cdc14 was significantly affected by the MEN mutations and the bub2 mutation. We conclude that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate Cdc14 release from the SPB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号