首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Sclerotium rolfsii lectin (SRL), a secretory protein from the soil borne phytopathogenic fungus Sclerotium rolfsii, has shown in our previous studies to bind strongly to the oncofetal Thomson-Friedenreich carbohydrate (Galβ1-3GalNAc-ser/thr, T or TF) antigen. TF antigen is widely expressed in many types of human cancers and the strong binding of SRL toward such a cancer-associated carbohydrate structure led us to characterize the carbohydrate binding specificity of SRL. Glycan array analysis, which included 285 glycans, shows exclusive binding of SRL to the O-linked mucin type but not N-linked glycans and amongst the mucin type O-glycans, lectin recognizes only mucin core 1, core 2 and weakly core 8 but not to other mucin core structures. It binds with high specificity to “α-anomers” but not the “β-anomers” of the TF structure. The axial C4-OH group of GalNAc and C2-OH group of Gal is both essential for SRL interaction with TF disaccharide, and substitution on C3 of galactose by sulfate or sialic acid or N-acetylglucosamine, significantly enhances the avidity of the lectin. SRL differs in its binding to TF structures compared to other known TF-binding lectins such as the Arachis hypogea (peanut) agglutinin, Agaricus bisporus (mushroom) lectin, Jackfruit, Artocarpus integrifolia (jacalin) and Amaranthus caudatus (Amaranthin) lectin. Thus, SRL has unique carbohydrate-binding specificity toward TF-related O-linked carbohydrate structures. Such a binding specificity will make this lectin a very useful tool in future structural as well as functional analysis of the cellular glycans in cancer studies.  相似文献   

2.
Mucins are linear O-glycosylated glycoproteins involved in inflammation, cell adhesion, and tumorigenesis. Cancer-associated mucins often possess increased expression of the T (Galβ1,3GalNAcαThr/Ser) and Tn (GalNAcαThr/Ser) cancer antigens, which are diagnostic markers for several cancers, including colon cancer. We have used AFM based single-molecule forced unbinding under near physiological conditions to investigate the self-interactions between porcine submaxillary mucin (PSM) as well as between PSM analogs possessing various carbohydrates including the T- and Tn-antigen. Distributions of unbinding forces and corresponding force loading rates were determined for force loading rates from 0.18 nN/s to 39 nN/s, and processed to yield most probable unbinding forces f* and lifetimes of the interactions. Parameter f* varied in the range 27 to 50 pN at force loading rates of about 2 nN/s among the various mucins. All mucin samples investigated showed self-interaction, but the tendency was greatest for PSM displaying only the Tn-antigen (Tn-PSM) or a mixture of Tn-, T-antigen, and the trisaccharide Fucα1,2Galβ1,3GalNAc (Tri-PSM). Weaker self-interactions were observed for native PSM (Fd-PSM), which consists of a nearly equal mixture of the longer core 1 blood group A tetrasaccharide (GalNAcα1,3(Fucα1,2)Galβ1,3GalNAcαSer/Thr) and Tn-antigen. The data are consistent with the truncated Tn and T glycans enhancing self-interaction of the mucins. These carbohydrate cancer antigens may, thus, play an active role in the disease by constitutively activating mucin and mucin-type receptors by self-association on cells.  相似文献   

3.
A new approach for removing O-glycosidically linked carbohydrate side chains from glycoproteins is described. Periodate oxidation of the C3 and C4 carbons in peptide-linked N-acetylgalactosamine (GalNAc) residues generates a dialdehyde product which, under mild alkaline conditions, undergoes a beta-elimination which releases carbohydrate and leaves an intact peptide core. The pH and time dependence, and intermediates of the elimination, have been extensively followed by carbon-13 NMR spectroscopy and amino acid analysis using ovine submaxillary mucin (OSM) as the substrate. The deglycosylation of OSM is complete and provides apomucin in high yield with an amino acid composition identical to the starting material. Carboxymethylated OSM when deglycosylated by this method gives an apomucin with an apparent molecular weight of ca. 700 x 10(3). The molecular weight is the same as that calculated for the peptide core of the starting mucin, demonstrating the absence of peptide core cleavage. This contrasts with the use of trifluoromethanesulfonic acid (TFMSA), which generates apomucin products of lower molecular weights. Oligosaccharide side chains substituted at C3 of the peptide-linked GalNAc residue are resistant to the oxidation and elimination. Glycoproteins containing these more complex side chains can be deglycosylated by pretreatment with TFMSA under mild (0 degree C) conditions, which removes peripheral sugars (while leaving the peptide-linked GalNAc residue intact), followed by oxidation and beta-elimination. Studies on the deglycosylation of porcine submaxillary mucin and human tracheobronchial mucin indicate that this approach provides more efficient removal of carbohydrate and less peptide core degradation than a more vigorous (25 degrees C) treatment with TFMSA alone. 13C NMR spectroscopic studies and carbohydrate analysis of the deglycosylation intermediates of the human mucin indicate that certain sialic acid containing and N-acetylglucosamine-containing oligosaccharides have elevated resistance to TFMSA treatment at 0 degrees C. By the use of neuraminidase, repeated mild TFMSA treatments, and multiple oxidations and beta-eliminations, the human mucin can be nearly completely deglycosylated. It is expected that all mucins and most glycoproteins containing O-glycosidic linkages can be readily and nearly completely deglycosylated using this combined approach.  相似文献   

4.
A method has been developed to determine the activities of specific sialyltransferases by analysis of the products of the reaction. This method, which utilizes high performance liquid chromatography, distinguishes addition of sialic acid to the N-acetylgalactosamine vs. galactose residues of the mucin disaccharide Galβ(1→3)GalNac, and can be used to distinguish formation of the 3′- and 6′-isomers of sialyllactose. For the bovine, ovine, and porcine submaxillary extracts, more than 95% of the activity with asialo ovine submaxillary mucin is due to formation of NeuAc α(2→6)GalNAc. With lactose as the acceptor, more than 95% of the α(2→3) isomer is produced. Activity with asialofetuin is due solely to the O-linked chain, with relative activity toward the galactose vs. GalNAc residues of 0.32, 1.5, and 0.10 for bovine, ovine, and porcine, respectively. The rat submaxillary gland extract showed equal formation of 3′- and 6′-sialyllactose, and very low activity with asialo ovine submaxillary mucin. However, at least 40% of the activity toward the Galβ(1→3)GalNAc disaccharide of asialofetuin was directed toward the GalNAc residue. The relative preference of the N-acetylgalactosaminide α(2→6) sialyltransferase for a monosaccharide vs. a substituted GalNAc may play a role in regulation of chain length during mucin synthesis.  相似文献   

5.
Seko A  Ohkura T  Ideo H  Yamashita K 《Glycobiology》2012,22(2):181-195
Human serum Krebs von den Lugen-6 (KL-6) antigen is a MUC1 glycoprotein (KL-6/MUC1) recognized by anti-KL-6 monoclonal antibody (KL-6/mAb) and has been utilized as a diagnostic marker for interstitial pneumonia. KL-6/mAb is thought to recognize the specific glycopeptides sequence of MUC1, but the precise glycan structure of the epitope is unclear. In this study, we determined the carbohydrate structures of KL-6/MUC1 to search the carbohydrate epitopes for KL-6/mAb. KL-6/MUC1 was purified from the culture medium of human breast cancer YMB-S cells by KL-6/mAb-affinity chromatography; the O-linked glycan structures were determined in combination with paper electrophoresis, several lectin column chromatographies, sialidase digestion and methanolysis. KL-6/MUC1 contained core 1 and extended core 1 glycans modified with one or two sialic acid/sulfate residues. Based on these structures, several synthetic glycans binding to anti-KL-6/mAb were compared with one another by surface plasmon resonance. Sequentially, related radiolabeled oligosaccharides were enzymatically synthesized and analyzed for binding to a KL-6/mAb-conjugated affinity column. 3'-sialylated, 6'-sulfated LNnT [Neu5Acα2-3(SO(3)(-)-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc], 3'-sialylated, 6-sulfated core 1 [Neu5Acα2-3Galβ1-3(SO(3)(-)-6)GalNAc] and disulfated core 1 SO(3)(-)-3Galβ1-3(SO(3)(-)-6)GalNAc exhibited substantial affinity for KL-6/mAb, and 3'-sulfated core 1 derivatives [SO(3)(-)-3Galβ1-3(±Neu5Acα2-6)GalNAc] and 3'-sialylated core 1 weakly interacted with KL-6/mAb. These results indicated that the possible carbohydrate epitopes of KL-6/mAb involve not only 3'-sialylated core 1 but also novel core 1 and extended core 1 with sulfate and sialic acid residues. Epitope expressing changes with suppression or over-expression of the Gal6ST (Gal 6-O-sulfotransferase) gene, suggesting that Gal6ST is involved in the biosynthesis of the unique epitopes of KL-6/mAb.  相似文献   

6.
The specificity of the sialic acid-binding lectin from the snail Cepaea hortensis, purified by affinity chromatography on fetuin-Sepharose, was studied by hemagglutination inhibition assay applying 32 sialic acid derivatives and 14 glycoproteins. 2-alpha-Methyl-9-O-acetyl-NeuAc was the most potent inhibitor, followed closely by 2-alpha-methyl-NeuAc and 2-alpha-benzyl-NeuAc. An axially orientated carboxyl group is a prerequisite for maximal lectin-sugar binding. Neither size nor polarity of the alpha-anomeric substituent significantly influenced inhibition potency. An intact sialic acid N-acetyl group is essential for optimal lectin-sugar interaction. The trihydroxypropyl side chain also is of great importance. However, a bulky hydrophobic substituent at the side chain like a 9-O-tosyl residue did not decrease binding to the lectin. The lectin did not distinguish between NeuAc alpha 2----3Gal beta 1----4Glc and NeuAc alpha 2----6Gal beta 1----4Glc. Among other sugars tested, only N-acetylglucosamine showed inhibition, although 50-fold less. The most potent glycoprotein inhibitors were those carrying O-chains only or preferentially, as ovine submaxillary mucin, bovine submaxillary mucin, and glycophorin A. Tamm-Horsfall protein was an exception being a strong inhibitor, although carrying only N-chains. Asialoglycoproteins were inactive. Glycoproteins containing the NeuAc alpha 2----3Gal sequence inhibited the lectin as well as those with NeuAc alpha 2----6GalNAc. From the results a model of the lectin's binding site for sialic acid is suggested.  相似文献   

7.
8.
The composition of the mucus gel of the tear film reflects the competing needs for transparency, stability, hydration, and protection of the ocular surface. Mucins form the macromolecular scaffolding of this hydrated gel, and glycans decorating these glycoproteins represent a rich source of binding ligands that may both modulate microbial binding and regulate the physicochemical characteristics of the gel. This study compares the structure of O-linked glycans derived from the ocular mucins of three species, to determine whether the ocular surface microenvironment dictates the need for a common pattern of O-linked carbohydrate structures. Ocular mucus aspirates were collected from healthy humans, rabbits and dogs. Mucins were purified using standard protocols. O-glycans were released by hydrazinoloysis and subsequently analysed by a combination of HPLC, exoglycosidase digestions and LC–MS/MS. A total of 12 different O-glycans were identified. In human ocular mucin, the majority were negatively charged and terminated in sialic acid, whilst those from rabbit or dog were mainly neutral and terminated in α 1-2 fucose and/or α 1-3 N-acetylgalactosamine. The glycans were short: the most common structures being tetra-, tri- or disaccharides. Less elaborate glycan structures are encountered at the ocular surface than at many other mucosal surfaces. Species-specific glycan expression is a feature of ocular surface mucins, and has implications for their defensive properties where different microbial and environmental challenges are encountered. Louise Royle and Elizabeth Matthews contributed equally to this work.  相似文献   

9.
Cystic fibrosis (CF) is the most lethal genetic disorder in Caucasians and is characterized by the production of excessive amounts of viscous mucus secretions in the airways of patients, leading to airway obstruction, chronic bacterial infections, and respiratory failure. Previous studies indicate that CF-derived airway mucins are glycosylated and sulfated differently compared with mucins from nondiseased (ND) individuals. To address unresolved questions about mucin glycosylation and sulfation, we examined O-glycan structures in mucins purified from mucus secretions of two CF donors versus two ND donors. All mucins contained galactose (Gal), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), and sialic acid (Neu5Ac). However, CF mucins had higher sugar content and more O-glycans compared with ND mucins. Both ND and CF mucins contained GlcNAc-6-sulfate (GlcNAc-6-Sul), Gal-6-Sul, and Gal-3-Sul, but CF mucins had higher amounts of the 6-sulfated species. O-glycans were released from CF and ND mucins and derivatized with 2-aminobenzamide (2-AB), separated by ion exchange chromatography, and quantified by fluorescence. There was nearly a two-fold increase in sulfation and sialylation in CF compared with ND mucin. High performance liquid chromatography (HPLC) profiles of glycans showed differences between the two CF samples compared with the two ND samples. Glycan compositions were defined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Unexpectedly, 260 compositional types of O-glycans were identified, and CF mucins contained a higher proportion of sialylated and sulfated O-glycans compared with ND mucins. These profound structural differences in mucin glycosylation in CF patients may contribute to inflammatory responses and increased pathogenesis by Pseudomonas aeruginosa.  相似文献   

10.
Lectins were used to characterize mucin glycoproteins and other secretory glycoconjugates synthesized by a human colon adenocarcinoma-derived cell line which expresses a goblet cell phenotype. Despite being clonally derived, HT29-18N2 (N2) cells, like normal goblet cells in situ were heterogeneous in their glycosylation of mucin. Only wheat-germ agglutinin, which recognizes N-acetylglucosamine and sialic acid residues, and succinylated wheatgerm agglutinin, which binds N-acetylglucosamine, stained the contents of all secretory granules in all N2 goblet cells. The N-acetylgalactosamine binding lectins Dolichos biflorus and Glycine max stained 20% and 21% of N2 goblet cells respectively. Ricinus communis I, a galactose-binding lectin, stained 67% of N2 goblet cells although staining by another galactose-binding lectin, Bandeiraea simplicifolia I, was limited to 19%. Peanut agglutinin, a lectin whose Gal(beta 1-3)GalNAc binding site is not present on mucins produced in the normal colon but which is found on most mucins of cancerous colonic epithelia, stained 68% of the cells. Ulex europeus I, a fucose-binding lectin, did not stain any N2 goblet cells. Four lectins (Lens culinaris, Pisum sativum, Phaseolus vulgaris E, Phaseolus vulgaris L) which recognize sugars normally present only in N-linked oligosaccharides stained up to 38% of N2 goblet cells. The binding of these lectins indicates either both O-linked and N-linked oligosaccharide chains are present on the mucin protein backbone or the co-existence of non-mucin N-linked glycoproteins and O-linked mucins within the goblet cell secretory granule.  相似文献   

11.
Little is known of the degree that polypeptide sequence and the local environment modulate the structures of O-linked glycans. Toward this understanding, the site-specific mono- (GalNAc-O-), di- (beta-Gal-1,3-alpha-GalNAc-O-), and trisaccharide (alpha-Fuc-1,2-beta-Gal-1,3-alpha-GalNAc-O-) distributions have been determined for 29 of the 31 O-glycosylated Ser/Thr residues in the tandem repeat domains of blood group A-negative porcine submaxillary gland mucin. The glycosylation patterns obtained from three individual animals are in agreement with earlier incomplete determinations on a pooled mucin (Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1997) J. Biol. Chem. 272, 9709-9719; Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1998) J. Biol. Chem. 273, 26580-26588), confirming that the addition of the peptide-linked GalNAc and its substitution by beta-1,3-Gal are sensitive to local peptide sequence in a highly reproducible manner in vivo. The present data further support earlier suggestions of an inverse correlation of the density of hydroxyamino acid residues (and by inference the density of peptide GalNAc) with the extent of substitution of the peptide-linked GalNAc by beta-1,3-Gal. This effect is highly correlated for Ser-linked glycans but not for Thr-linked glycans. A similar correlation is observed with respect to the in vivo peptide GalNAc glycosylation pattern. In contrast, the addition of alpha-1,2-Fuc to beta-Gal shows no apparent correlation with hydroxyamino acid density, although a marked elevation in the fucosylation of Ser-linked glycans compared with Thr-linked glycans is observed. The above effects may represent both steric and conformational factors acting to alter the relative accessibility and activity of the glycosyltransferases toward substrate. These results demonstrate that the porcine submaxillary gland core 1 beta 3-galactosyltransferase and alpha2-fucosyltransferase exhibit unique peptide/glycopeptide sensitivities that may provide mechanisms for the modulation of O-linked side chain structures.  相似文献   

12.
Glycoconjugates could play a role in cell adhesion and migration mechanisms, including the locomotive movements of the primordial germ cells (PGCs) during the development of the embryo. In the present work, we have studied by lectin histochemistry the presence of N-acetylgalactosamine (GalNAc) in the glycans of the Xenopus PGCs, as a first approach to identifying their glycoconjugates which could be involved in the migration mechanism. The PGCs were negative for three of the GalNAc-binding lectins employed (from soybean, SBA; from lima bean, LBA; and from snail, HPA). However, when sialic acid (NeuAc) was previously removed by acid hydrolysis, SBA and HPA, but not LBA, labeled the PGCs, except if the staining was combined with the beta-elimination procedure. This suggests the presence of GalNAc alpha(1,3)-linked to galactose (Gal) in O-linked oligosaccharides, in a subterminal position to NeuAc. As the PGCs were always negative for LBA, the absence of fucose alpha(1,2)-linked to subterminal Gal is suggested. With the lectin from horse gram (DBA), the PGCs were stained, although beta-elimination turned the cells negative and acid hydrolysis increased the labeling, suggesting that GalNAc(alpha)(1,3)GalNAc was in O-linked glycans in terminal and subterminal to NeuAc position.  相似文献   

13.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

14.
We found that phorbol ester-primed THP-1 cells (a human monocyte cell line), which express a scavenger receptor, were stimulated by mucins through the macrophage scavenger receptor, resulting in enhanced secretion of IL-1beta. The activity was abolished by treatment of the mucins with sialidase, indicating that sialic acid is involved in binding. (125)I-Labeled ovine submaxillary mucin could bind to COS 7 cells transfected with cDNA encoding the scavenger receptor. Binding was inhibited by mucins, fucoidan, and polyinosinic acid but not by polycytidylic acid, this being consistent with the characteristics of the scavenger receptor. When phorbol ester-primed THP-1 cells were cocultured with colon cancer cells producing mucins, IL-1beta secreted from the THP-1 cells increased significantly. Adhesion between colon cancer cells and a scavenger receptor transfectant was observed, and binding was inhibited partly by mucins and ligands for the scavenger receptor.  相似文献   

15.
Amphibia egg jelly coats are formed by components secreted along the oviduct. These secretion products overlay the oocytes as they pass along the different oviducal portions. Mucin type glycoproteins are the major constituents of the egg jelly coats. In this study, the O-linked carbohydrate chains of the jelly coats surrounding the eggs of Rana ridibunda were released by alkaline borohydride treatment. Fractionation of the mixture of O-linked oligosaccharide-alditols was achieved by a combination of chromatographic techniques including gel-permeation chromatography, ion-exchange chromatography and high-performance liquid chromatography using an amino-bonded silica column. The primary structures of these O-glycans were determined by one-dimensional and two-dimensional 1H-NMR spectroscopy and matrix-assisted laser-desorption-ionization-time-of flight mass spectrometry. 25 oligosaccharide structures, possessing a core consisting of Gal(beta1-3)GalNAc-ol with or without branching through a GlcNAc residue linked (beta1-6) to the GalNAc residue (core type 2 or core type 1, respectively) are described. The most representative antennae are: HSO3(6)[Fuc(alpha1-3)]GlcNAc; Gal(beta1-2)Gal; Gal(beta1-2)Gal(alpha1-3)[Fuc(alpha1-2)]Gal; GlcA(beta1-3)-Gal(beta1-3)[Fuc(alpha1-2)]Gal; GalNAc(alpha1-4)Gal(beta1-4)Gal; Gal(beta1-3)GalNAc(alpha1-4)Gal(beta1-4)Gal and GlcA(beta1-3)Gal(beta1-3)GalNAc. These results confirm the species-specific O-glycosylation of Amphibia oviducal mucins. The significance of this observation should be linked to a symbiotic role of carbohydrates involved in host-parasite interactions.  相似文献   

16.
A lectin (Amaranthin) present in the seeds of Amaranthus caudatus has been isolated by fractionation on DEAE-cellulose followed by affinity chromatography on Synsorb-T beads (Gal beta 1,3GalNAc alpha-O-R-Synsorb). The lectin appeared homogeneous by gel electrophoresis at pH 4.3 and gave a single protein band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Mr = 33,000-36,000. A native Mr = 54,000 was determined by gel filtration suggesting that amaranthin exists as a homodimer. Compositional analysis revealed high amounts of acidic and hydroxyamino acids and relatively large amounts of lysine, methionine, and tryptophan for a plant protein. Amaranthin formed a precipitate with asialo-bovine submaxillary mucin, asialo-ovine submaxillary, porcine submaxillary mucin, asialo-fetuin and asialoglycophorin. Hapten inhibition of precipitate formation between amaranthin and asialo-ovine submaxillary indicated that the T-disaccharide and its alpha-linked glycosides (Gal beta 1,3GalNAc alpha-O-R; R = OH, methyl, -(CH2)8-COOCH3, allyl, o-nitrophenyl, or benzyl) were the best inhibitors. N-Acetylgalactosamine, the only monosaccharide which inhibited precipitation, was 350-fold less effective than Gal beta 1,3GalNAc alpha-O-R. Hapten inhibition with derivatives of the T-disaccharide suggested that the C'-4 axial hydroxyl group of the galactosyl moiety, and the C-4 axial hydroxyl group, and the C-2 acetamido group of the GalNAc unit are the most important loci for lectin interaction. NeuAc alpha 2,3Gal beta 1,3GalNAc alpha-O-(CH2)8CO2CH3 was as potent an inhibitor as Gal beta 1,3GalNAc alpha-O-(CH2)8CO2-CH3, and amaranthin was precipitated by NeuAc alpha 2,3Gal beta 1,3GalNAc alpha-O-BSA (where BSA is bovine serum albumin), indicating that the amaranthin-combining site tolerates substitutions at the C'-3 hydroxyl group. Amaranthin was precipitated by a Gal beta 1,3GalNAc alpha-O-BSA glycoconjugate but not by the anomeric Gal beta 1,3GalNAc beta-O-BSA glycoconjugate illustrating that the disaccharide must be linked alpha in order to interact with the lectin. Metal ions do not appear to be required for lectin activity. A study of pH dependence showed significant precipitate formation between pH 4 to 9 with a maximum at pH 5. Hapten inhibition and glycoconjugate precipitation assays were also conducted for peanut (Arachis hypogaea) agglutinin. A comparison between the carbohydrate-binding specificities of amaranthin and peanut (Arachis hypogaea) agglutinin is discussed.  相似文献   

17.
A second lectin (SNA-II) has been isolated from elderberry (Sambucus nigra L.) bark by affinity chromatography on immobilized asialo-glycophorin. This lectin is a blood group nonspecific glycoprotein containing 7.8% carbohydrate and which is rich in asparagine/aspartic acid, glutamine/glutamic acid, glycine, valine, and leucine. Gel filtration on Superose 12 gave a single symmetrical peak corresponding to Mr, 51,000; SDS-acrylamide electrophoresis gave a single polypeptide, Mr, 30,000. Hence SNA-II appears to be a homodimer. The lectin is a Gal/GalNAc-specific lectin which is precipitated by glycoproteins containing GalNAc-terminated oligosaccharide chains (e.g., asialo-ovine submaxillary and hog gastric mucins), and by glycoproteins and polysaccharides having multiple terminal nonreducing D-galactosyl groups as occur in asialoglycophorin, asialo-laminin and Type 14 pneumococcal polysaccharide. The carbohydrate binding specificity of SNA-II was studied by sugar hapten inhibition of the asialo-glycophorin precipitation reaction. The lectin's binding site appears to be most complementary to Gal-NAc linked alpha to the C-2, C-3, or C-6 hydroxyl group of galactose. These disaccharide units are approximately 100 times more potent than melibiose, 60 times more potent than N-acetyllactosamine, and 30 times more potent than lactose. Interestingly, the blood group A-active trisaccharide containing an L-fucosyl group linked alpha 1-2 to galactose was 10-fold poorer as an inhibitor than the parent oligosaccharide (GalNAc alpha 1-3Gal), suggesting steric hindrance to binding by the alpha-L-fucosyl group; this explains the failure of the lectin to exhibit blood group A specificity.  相似文献   

18.
From the mouse sublingual and submandibular glands high-molecular weight glycoproteins (mucins) were isolated. These mucins appeared to be homogeneous in polyacrylamide gel electrophoresis and in the analytical ultracentrifuge. S20,W values of 10.9 and 5.5 were found for the sublingual and submandibular mucin respectively. With sodium dodecyl sulfate or N-acetylcysteine no subunits could be detected. Both mucins consisted for about 1/3 of protein and 2/3 carbohydrate. Their mucin character was also denoted by the high content of serine plus threonine. Respectively 42 mol% and 34 mol% of the protein core of the sublingual and submandibular mucins consisted of these amino acids. The main sugars in these mucins were sialic acid, galactosamine, galactose, glucosamine and mannose. The molar ratio for the sublingual and submandibular mucin being 1.00 : 1.03 : 1.08 : 0.26 : 0.23 and 1.00 : 0.71 : 1.10 : 0.65 : 0.53, respectively. The sialic acid content of both mucins was about 25%. Fucose and sulfate, on the other hand, were less than 1%. The presence of sulfate was also indicated by preliminary studies in vivo on the incorporation of [35SO4] sulfate.  相似文献   

19.
The acceptor substrate specificities of ST6GalNAc I and II, which act on the synthesis of O-linked oligosaccharides, were reexamined using ovine submaxillary mucin, [Ala-Thr(GalNAc)-Ala]n polymer (n = 7-11). It has been suggested that only ST6GalNAc I can synthesize carbohydrate structures of sialyl-Tn-antigen; i.e., NeuAc alpha2-6GalNAc-O-Thr/Ser [Kurosawa et al., J. Biol. Chem. 269, 19048-19053 (1994)] based on the result that ST6GalNAc I, not ST6GalNAc II, exhibited activity toward asialoagalacto-fetuin. In this study, we present evidence that both ST6GalNAc I and II exhibit activity toward asialo-OSM (ovine submaxillary mucin) and [Ala-Thr(GalNAc)-Ala]n polymer (n = 7-11) which have only the GalNAc-O-Thr/Ser-structures. These results strongly indicate that not only ST6GalNAc I but also II are candidates for sialyl-Tn synthases.  相似文献   

20.
A carbohydrate-binding protein was isolated from the carpophores of the mushrooms and designated the Chlorophyllum molybdites lectin (CML) based on its origin. The molecular mass of CML was 32 kDa, and it was composed of two 16-kDa monomers with no disulfide bonds. Monosaccharide analysis indicated that 12% of the mass of CML was carbohydrate and consisted of GlcNAc:GalNAc:Gal:Man:l-Fuc in a molar ratio of 1.5:1.9: 4.4:4.8:1.0. In the hemagglutination inhibition assay, CML exhibited the strongest binding specificity toward N-glycolylneuraminic acid (NeuGc) among the monosaccharides tested, whereas NeuAc did not inhibit the hemagglutination at all. GalNAc and Mealpha-GalNAc were also inhibitory at much higher concentrations than NeuGc. Among the glycoproteins, asialobovine submaxillary mucin (BSM) and porcine stomach mucin (PSM) showed strong inhibitory effects. In surface plasmon resonance analysis, asialo-BSM and PSM exhibited the strongest binding affinity. After co-injection of CML and NeuGc or GalNAc onto the asialo-BSM- or PSM-immobilized chip, the dissociation of CML from the immobilized PSM was accelerated by NeuGc and GalNAc, but the dissociation of CML from the immobilized asialo-BSM was only promoted by GalNAc. These results and the other surface plasmon resonance experiments allowed us to conclude that the binding of asialo-BSM to CML was because of an interaction between the lectin and the GalNAc residues of asialo-BSM, and both the NeuGc and GalNAc residues were responsible for the binding of PSM to CML. The results also suggested that CML had two different carbohydrate binding domains, one specific for NeuGc and the other for GalNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号