首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adipocyte secretes bioactive proteins called adipocytokines, and biosynthesis of secretory proteins requires molecular chaperones and folding enzymes in endoplasmic reticulum (ER). ER chaperones are known to be induced by unfolded protein response (UPR) and growth factors, however, it has not been determined how ER chaperones expression is regulated in adipocytes. Here we show that insulin treatment induced GRP78 and ERO1L mRNA levels in 3T3-L1 adipocytes. Insulin also upregulated CHOP mRNA levels, but did not induce phosphorylation of eIF2α. Pretreatment with insulin protected 3T3-L1 adipocytes against thapsigargin-mediated phosphorylation of eIF2α but did not against DTT-mediated one. In vivo mice study showed that GRP78 and CHOP expressions were regulated by feeding conditions. These results suggest that insulin signaling is important to induce mRNA expressions of GRP78 and CHOP, and may have a protective role against UPR.  相似文献   

2.
Quinotrierixin was isolated from microbes as an inhibitor of ER stress-induced XBP1 mRNA splicing, but its mode of action was unclear. We found that quinotrierixin is an inhibitor of protein synthesis, and that the required dose range of quinotrierixin to inhibit ER stress-induced XBP1 mRNA splicing was similar to that to inhibit protein synthesis. Furthermore, we also found that quinotrierixin inhibited the ER stress-induced increases of unfolded protein response-related genes such as GRP78, CHOP, EDEM, ERdj4, and p58(IPK). Thus, we showed that quinotrierixin inhibited the ER stress-induced unfolded protein response, possibly due to its inhibitory activity of protein synthesis.  相似文献   

3.
ER chaperones in mammalian development and human diseases   总被引:14,自引:0,他引:14  
Ni M  Lee AS 《FEBS letters》2007,581(19):3641-3651
The field of endoplasmic reticulum (ER) stress in mammalian cells has expanded rapidly during the past decade, contributing to understanding of the molecular pathways that allow cells to adapt to perturbations in ER homeostasis. One major mechanism is mediated by molecular ER chaperones which are critical not only for quality control of proteins processed in the ER, but also for regulation of ER signaling in response to ER stress. Here, we summarized the properties and functions of GRP78/BiP, GRP94/gp96, GRP170/ORP150, GRP58/ERp57, PDI, ERp72, calnexin, calreticulin, EDEM, Herp and co-chaperones SIL1 and P58(IPK) and their role in development and diseases. Many of the new insights are derived from recently constructed mouse models where the genes encoding the chaperones are genetically altered, providing invaluable tools for examining the physiological involvement of the ER chaperones in vivo.  相似文献   

4.
5.
6.
7.
Missense mutations in the human presenilin-1 (PS1) gene, which is found on chromosome 14, cause early-onset familial Alzheimer's disease (FAD). FAD-linked PS1 variants alter proteolytic processing of the amyloid precursor protein and cause an increase in vulnerability to apoptosis induced by various cell stresses. However, the mechanisms responsible for these phenomena are not clear. Here we report that mutations in PS1 affect the unfolded-protein response (UPR), which responds to the increased amount of unfolded proteins that accumulate in the endoplasmic reticulum (ER) under conditions that cause ER stress. PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding. Interestingly, GRP78 levels are reduced in the brains of Alzheimer's disease patients. The downregulation of UPR signalling by PS1 mutations is caused by disturbed function of IRE1, which is the proximal sensor of conditions in the ER lumen. Overexpression of GRP78 in neuroblastoma cells bearing PS1 mutants almost completely restores resistance to ER stress to the level of cells expressing wild-type PS1. These results show that mutations in PS1 may increase vulnerability to ER stress by altering the UPR signalling pathway.  相似文献   

8.
9.
10.
11.
12.
13.
Endoplasmic reticulum protein 29 (ERp29) belongs to the redox-inactive PDI-Dβ-subfamily of PDI-proteins. ERp29 is expressed in all mammalian tissues examined. Especially high levels of expression were observed in secretory tissues and in some tumors. However, the biological role of ERp29 remains unclear. In the present study we show, by using thyrocytes and primary dermal fibroblasts from adult ERp29?/? mice, that ERp29 deficiency affects the activation of the ATF6–CHOP-branch of unfolded protein response (UPR) without influencing the function of other UPR branches, like the ATF4-eIF2α-XBP1 signaling pathway. As a result of impaired ATF6 activation, dermal fibroblasts and adult thyrocytes from ERp29?/? mice display significantly lower apoptosis sensitivities when treated with tunicamycin and hydrogen peroxide. However, in contrast to previous reports, we could demonstrate that ERp29 deficiency does not alter thyroglobulin expression levels. Therefore, our study suggests that ERp29 acts as an escort factor for ATF6 and promotes its transport from ER to Golgi apparatus under ER stress conditions.  相似文献   

14.
We present the first identification of transient folding intermediates of endogenous thyroglobulin (Tg; a large homodimeric secretory glycoprotein of thyrocytes), which include mixed disulfides with endogenous oxidoreductases servicing Tg folding needs. Formation of disulfide-linked Tg adducts with endoplasmic reticulum (ER) oxidoreductases begins cotranslationally. Inhibition of ER glucosidase activity blocked formation of a subgroup of Tg adducts containing ERp57 while causing increased Tg adduct formation with protein disulfide isomerase (PDI), delayed adduct resolution, perturbed oxidative folding of Tg monomers, impaired Tg dimerization, increased Tg association with BiP/GRP78 and GRP94, activation of the unfolded protein response, increased ER-associated degradation of a subpopulation of Tg, partial Tg escape from ER quality control with increased secretion of free monomers, and decreased overall Tg secretion. These data point towards mixed disulfides with the ERp57 oxidoreductase in conjunction with calreticulin/calnexin chaperones acting as normal early Tg folding intermediates that can be "substituted" by PDI adducts only at the expense of lower folding efficiency with resultant ER stress.  相似文献   

15.
16.
Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.  相似文献   

17.
Cells activate the unfolded protein response (UPR) to cope with endoplasmic reticulum (ER) stress. In the present study, we investigated the possible involvement of psychological stress on UPR induction in the mouse brain. When mice were exposed to immobilization stress for 8?h, XBP1 mRNA splicing was significantly induced in the hippocampus, cortex, hypothalamus, cerebellum, and brain stem. On the other hand, we did not observe any increase in XBP1 splicing in the liver, suggesting that this effect is specific to the brain. Stress-induced XBP1 splicing was attenuated 2 days after immobilization stress. We did not observe increases in any other UPR genes, such as CHOP or GRP78, in mouse brains after immobilization stress. These findings indicate an important specific role of XBP1 in response to psychological stress in the mouse brain.  相似文献   

18.
19.
Role of the unfolded protein response in cell death   总被引:10,自引:0,他引:10  
Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-κB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-κB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号