首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Izrailev S  Farnum MA 《Proteins》2004,57(4):711-724
The problem of assigning a biochemical function to newly discovered proteins has been traditionally approached by expert enzymological analysis, sequence analysis, and structural modeling. In recent years, the appearance of databases containing protein-ligand interaction data for large numbers of protein classes and chemical compounds have provided new ways of investigating proteins for which the biochemical function is not completely understood. In this work, we introduce a method that utilizes ligand-binding data for functional classification of enzymes. The method makes use of the existing Enzyme Commission (EC) classification scheme and the data on interactions of small molecules with enzymes from the BRENDA database. A set of ligands that binds to an enzyme with unknown biochemical function serves as a query to search a protein-ligand interaction database for enzyme classes that are known to interact with a similar set of ligands. These classes provide hypotheses of the query enzyme's function and complement other computational annotations that take advantage of sequence and structural information. Similarity between sets of ligands is computed using point set similarity measures based upon similarity between individual compounds. We present the statistics of classification of the enzymes in the database by a cross-validation procedure and illustrate the application of the method on several examples.  相似文献   

2.
MOTIVATION: One particular application of microarray data, is to uncover the molecular variation among cancers. One feature of microarray studies is the fact that the number n of samples collected is relatively small compared to the number p of genes per sample which are usually in the thousands. In statistical terms this very large number of predictors compared to a small number of samples or observations makes the classification problem difficult. An efficient way to solve this problem is by using dimension reduction statistical techniques in conjunction with nonparametric discriminant procedures. RESULTS: We view the classification problem as a regression problem with few observations and many predictor variables. We use an adaptive dimension reduction method for generalized semi-parametric regression models that allows us to solve the 'curse of dimensionality problem' arising in the context of expression data. The predictive performance of the resulting classification rule is illustrated on two well know data sets in the microarray literature: the leukemia data that is known to contain classes that are easy 'separable' and the colon data set.  相似文献   

3.
Qiao X  Liu Y 《Biometrics》2009,65(1):159-168
Summary .  In multicategory classification, standard techniques typically treat all classes equally. This treatment can be problematic when the dataset is unbalanced in the sense that certain classes have very small class proportions compared to others. The minority classes may be ignored or discounted during the classification process due to their small proportions. This can be a serious problem if those minority classes are important. In this article, we study the problem of unbalanced classification and propose new criteria to measure classification accuracy. Moreover, we propose three different weighted learning procedures, two one-step weighted procedures, as well as one adaptive weighted procedure. We demonstrate the advantages of the new procedures, using multicategory support vector machines, through simulated and real datasets. Our results indicate that the proposed methodology can handle unbalanced classification problems effectively.  相似文献   

4.
Discrimination of disease patients based on gene expression data is a crucial problem in clinical area. An important issue to solve this problem is to find a discriminative subset of genes from thousands of genes on a microarray or DNA chip. Aiming at finding informative genes for disease classification on microarray, we present a gene selection method based on the forward variable (gene) selection method (FSM) and show, using typical public microarray datasets, that our method can extract a small set of genes being crucial for discriminating different classes with a very high accuracy almost closed to perfect classification.  相似文献   

5.
A neural network architecture for data classification   总被引:1,自引:0,他引:1  
This article aims at showing an architecture of neural networks designed for the classification of data distributed among a high number of classes. A significant gain in the global classification rate can be obtained by using our architecture. This latter is based on a set of several little neural networks, each one discriminating only two classes. The specialization of each neural network simplifies their structure and improves the classification. Moreover, the learning step automatically determines the number of hidden neurons. The discussion is illustrated by tests on databases from the UCI machine learning database repository. The experimental results show that this architecture can achieve a faster learning, simpler neural networks and an improved performance in classification.  相似文献   

6.
Cho JH  Lee D  Park JH  Lee IB 《FEBS letters》2003,551(1-3):3-7
In this work we propose a new method for finding gene subsets of microarray data that effectively discriminates subtypes of disease. We developed a new criterion for measuring the relevance of individual genes by using mean and standard deviation of distances from each sample to the class centroid in order to treat the well-known problem of gene selection, large within-class variation. Also this approach has the advantage that it is applicable not only to binary classification but also to multiple classification problems. We demonstrated the performance of the method by applying it to the publicly available microarray datasets, leukemia (two classes) and small round blue cell tumors (four classes). The proposed method provides a very small number of genes compared with the previous methods without loss of discriminating power and thus it can effectively facilitate further biological and clinical researches.  相似文献   

7.
Clustering of multivariate data is a commonly used technique in ecology, and many approaches to clustering are available. The results from a clustering algorithm are uncertain, but few clustering approaches explicitly acknowledge this uncertainty. One exception is Bayesian mixture modelling, which treats all results probabilistically, and allows comparison of multiple plausible classifications of the same data set. We used this method, implemented in the AutoClass program, to classify catchments (watersheds) in the Murray Darling Basin (MDB), Australia, based on their physiographic characteristics (e.g. slope, rainfall, lithology). The most likely classification found nine classes of catchments. Members of each class were aggregated geographically within the MDB. Rainfall and slope were the two most important variables that defined classes. The second-most likely classification was very similar to the first, but had one fewer class. Increasing the nominal uncertainty of continuous data resulted in a most likely classification with five classes, which were again aggregated geographically. Membership probabilities suggested that a small number of cases could be members of either of two classes. Such cases were located on the edges of groups of catchments that belonged to one class, with a group belonging to the second-most likely class adjacent. A comparison of the Bayesian approach to a distance-based deterministic method showed that the Bayesian mixture model produced solutions that were more spatially cohesive and intuitively appealing. The probabilistic presentation of results from the Bayesian classification allows richer interpretation, including decisions on how to treat cases that are intermediate between two or more classes, and whether to consider more than one classification. The explicit consideration and presentation of uncertainty makes this approach useful for ecological investigations, where both data and expectations are often highly uncertain.  相似文献   

8.
Deb K  Raji Reddy A 《Bio Systems》2003,72(1-2):111-129
In the area of bioinformatics, the identification of gene subsets responsible for classifying available disease samples to two or more of its variants is an important task. Such problems have been solved in the past by means of unsupervised learning methods (hierarchical clustering, self-organizing maps, k-mean clustering, etc.) and supervised learning methods (weighted voting approach, k-nearest neighbor method, support vector machine method, etc.). Such problems can also be posed as optimization problems of minimizing gene subset size to achieve reliable and accurate classification. The main difficulties in solving the resulting optimization problem are the availability of only a few samples compared to the number of genes in the samples and the exorbitantly large search space of solutions. Although there exist a few applications of evolutionary algorithms (EAs) for this task, here we treat the problem as a multiobjective optimization problem of minimizing the gene subset size and minimizing the number of misclassified samples. Moreover, for a more reliable classification, we consider multiple training sets in evaluating a classifier. Contrary to the past studies, the use of a multiobjective EA (NSGA-II) has enabled us to discover a smaller gene subset size (such as four or five) to correctly classify 100% or near 100% samples for three cancer samples (Leukemia, Lymphoma, and Colon). We have also extended the NSGA-II to obtain multiple non-dominated solutions discovering as much as 352 different three-gene combinations providing a 100% correct classification to the Leukemia data. In order to have further confidence in the identification task, we have also introduced a prediction strength threshold for determining a sample's belonging to one class or the other. All simulation results show consistent gene subset identifications on three disease samples and exhibit the flexibilities and efficacies in using a multiobjective EA for the gene subset identification task.  相似文献   

9.
MOTIVATION: The problem of class prediction has received a tremendous amount of attention in the literature recently. In the context of DNA microarrays, where the task is to classify and predict the diagnostic category of a sample on the basis of its gene expression profile, a problem of particular importance is the diagnosis of cancer type based on microarray data. One method of classification which has been very successful in cancer diagnosis is the support vector machine (SVM). The latter has been shown (through simulations) to be superior in comparison with other methods, such as classical discriminant analysis, however, SVM suffers from the drawback that the solution is implicit and therefore is difficult to interpret. In order to remedy this difficulty, an analysis of variance decomposition using structured kernels is proposed and is referred to as the structured polychotomous machine. This technique utilizes Newton-Raphson to find estimates of coefficients followed by the Rao and Wald tests, respectively, for addition and deletion of import vectors. RESULTS: The proposed method is applied to microarray data and simulation data. The major breakthrough of our method is efficiency in that only a minimal number of genes that accurately predict the classes are selected. It has been verified that the selected genes serve as legitimate markers for cancer classification from a biological point of view. AVAILABILITY: All source codes used are available on request from the authors.  相似文献   

10.
In protein structure prediction, a central problem is defining the structure of a loop connecting 2 secondary structures. This problem frequently occurs in homology modeling, fold recognition, and in several strategies in ab initio structure prediction. In our previous work, we developed a classification database of structural motifs, ArchDB. The database contains 12,665 clustered loops in 451 structural classes with information about phi-psi angles in the loops and 1492 structural subclasses with the relative locations of the bracing secondary structures. Here we evaluate the extent to which sequence information in the loop database can be used to predict loop structure. Two sequence profiles were used, a HMM profile and a PSSM derived from PSI-BLAST. A jack-knife test was made removing homologous loops using SCOP superfamily definition and predicting afterwards against recalculated profiles that only take into account the sequence information. Two scenarios were considered: (1) prediction of structural class with application in comparative modeling and (2) prediction of structural subclass with application in fold recognition and ab initio. For the first scenario, structural class prediction was made directly over loops with X-ray secondary structure assignment, and if we consider the top 20 classes out of 451 possible classes, the best accuracy of prediction is 78.5%. In the second scenario, structural subclass prediction was made over loops using PSI-PRED (Jones, J Mol Biol 1999;292:195-202) secondary structure prediction to define loop boundaries, and if we take into account the top 20 subclasses out of 1492, the best accuracy is 46.7%. Accuracy of loop prediction was also evaluated by means of RMSD calculations.  相似文献   

11.
Planning impairments mark a well-documented consequence of neurodegenerative diseases such as Parkinson's disease (PD). Recently, using the Tower of London task we demonstrated that, rather than being generally impaired, PD patients selectively fail when planning requires flexible in-breadth search strategies. For a better understanding of the interindividual patterns underlying specific planning impairments, here we performed an explorative re-analysis of the original data using a latent-class model-based approach. Data-driven classification according to subjects' performance was based on a multinomial processing tree (MPT) model accommodating the impact of increased breadth versus depth of looking ahead during planning. In order to assess interindividual variability in coping with these different task demands, an extension of MPT models was used in which sample-immanent heterogeneity is accounted for by identifying different latent classes of individuals. Two latent classes were identified that differed considerably in performance for problems placing high demands on the depth of anticipatory search processes. In addition, these impairments were independent of PD diagnosis. However, latent-class mediated search depth-related deficits in planning performance were associated with poorer outcomes in dementia screenings, albeit sub-clinical. PD patients exhibited additional deficits related to the breadth of searching ahead. Taken together, results revealed dissociable impairments in specific planning processes within a single task of visuospatial problem solving. Present analyses put forward the hypothesis that cognitive sequelae of PD and sub-clinical signs of dementia may be related to differential patterns of planning impairments.  相似文献   

12.
This paper studies the problem of building multiclass classifiers for tissue classification based on gene expression. The recent development of microarray technologies has enabled biologists to quantify gene expression of tens of thousands of genes in a single experiment. Biologists have begun collecting gene expression for a large number of samples. One of the urgent issues in the use of microarray data is to develop methods for characterizing samples based on their gene expression. The most basic step in the research direction is binary sample classification, which has been studied extensively over the past few years. This paper investigates the next step-multiclass classification of samples based on gene expression. The characteristics of expression data (e.g. large number of genes with small sample size) makes the classification problem more challenging. The process of building multiclass classifiers is divided into two components: (i) selection of the features (i.e. genes) to be used for training and testing and (ii) selection of the classification method. This paper compares various feature selection methods as well as various state-of-the-art classification methods on various multiclass gene expression datasets. Our study indicates that multiclass classification problem is much more difficult than the binary one for the gene expression datasets. The difficulty lies in the fact that the data are of high dimensionality and that the sample size is small. The classification accuracy appears to degrade very rapidly as the number of classes increases. In particular, the accuracy was very low regardless of the choices of the methods for large-class datasets (e.g. NCI60 and GCM). While increasing the number of samples is a plausible solution to the problem of accuracy degradation, it is important to develop algorithms that are able to analyze effectively multiple-class expression data for these special datasets.  相似文献   

13.
The diagnosis/prognosis problem has already been introduced by the authors in previous papers as a classification problem for survival data. In this paper, the specific aspects of the estimation of the survival functions in diagnostic classes and the evaluation of the posterior probabilities of the diagnostic classes are addressed; a latent random variable Z is defined to denote the classification of censored and uncensored individuals, where early censored individuals cannot be immediately classified as Z is not observed. Parameter estimation of the mixture survival model thus derived is carried out using a proper version of the EM algorithm with given prior probabilities on Z and diagnostic/prognostic information provided by the observable covariates is also included into the model. Numerical examples using AIDS data and a simulation study are used to better outline the main features of the model and of the estimation methodology.  相似文献   

14.

Motivation

DNA microarray analysis is characterized by obtaining a large number of gene variables from a small number of observations. Cluster analysis is widely used to analyze DNA microarray data to make classification and diagnosis of disease. Because there are so many irrelevant and insignificant genes in a dataset, a feature selection approach must be employed in data analysis. The performance of cluster analysis of this high-throughput data depends on whether the feature selection approach chooses the most relevant genes associated with disease classes.

Results

Here we proposed a new method using multiple Orthogonal Partial Least Squares-Discriminant Analysis (mOPLS-DA) models and S-plots to select the most relevant genes to conduct three-class disease classification and prediction. We tested our method using Golub’s leukemia microarray data. For three classes with subtypes, we proposed hierarchical orthogonal partial least squares-discriminant analysis (OPLS-DA) models and S-plots to select features for two main classes and their subtypes. For three classes in parallel, we employed three OPLS-DA models and S-plots to choose marker genes for each class. The power of feature selection to classify and predict three-class disease was evaluated using cluster analysis. Further, the general performance of our method was tested using four public datasets and compared with those of four other feature selection methods. The results revealed that our method effectively selected the most relevant features for disease classification and prediction, and its performance was better than that of the other methods.  相似文献   

15.

Background  

The most fundamental task using gene expression data in clinical oncology is to classify tissue samples according to their gene expression levels. Compared with traditional pattern classifications, gene expression-based data classification is typically characterized by high dimensionality and small sample size, which make the task quite challenging.  相似文献   

16.
Microarray data classification using automatic SVM kernel selection   总被引:1,自引:0,他引:1  
Nahar J  Ali S  Chen YP 《DNA and cell biology》2007,26(10):707-712
Microarray data classification is one of the most important emerging clinical applications in the medical community. Machine learning algorithms are most frequently used to complete this task. We selected one of the state-of-the-art kernel-based algorithms, the support vector machine (SVM), to classify microarray data. As a large number of kernels are available, a significant research question is what is the best kernel for patient diagnosis based on microarray data classification using SVM? We first suggest three solutions based on data visualization and quantitative measures. Different types of microarray problems then test the proposed solutions. Finally, we found that the rule-based approach is most useful for automatic kernel selection for SVM to classify microarray data.  相似文献   

17.
MOTIVATION: Recent studies have shown that microarray gene expression data are useful for phenotype classification of many diseases. A major problem in this classification is that the number of features (genes) greatly exceeds the number of instances (tissue samples). It has been shown that selecting a small set of informative genes can lead to improved classification accuracy. Many approaches have been proposed for this gene selection problem. Most of the previous gene ranking methods typically select 50-200 top-ranked genes and these genes are often highly correlated. Our goal is to select a small set of non-redundant marker genes that are most relevant for the classification task. RESULTS: To achieve this goal, we developed a novel hybrid approach that combines gene ranking and clustering analysis. In this approach, we first applied feature filtering algorithms to select a set of top-ranked genes, and then applied hierarchical clustering on these genes to generate a dendrogram. Finally, the dendrogram was analyzed by a sweep-line algorithm and marker genes are selected by collapsing dense clusters. Empirical study using three public datasets shows that our approach is capable of selecting relatively few marker genes while offering the same or better leave-one-out cross-validation accuracy compared with approaches that use top-ranked genes directly for classification. AVAILABILITY: The HykGene software is freely available at http://www.cs.dartmouth.edu/~wyh/software.htm CONTACT: wyh@cs.dartmouth.edu SUPPLEMENTARY INFORMATION: Supplementary material is available from http://www.cs.dartmouth.edu/~wyh/hykgene/supplement/index.htm.  相似文献   

18.
Tumor classification is a well-studied problem in the field of bioinformatics. Developments in the field of DNA chip design have now made it possible to measure the expression levels of thousands of genes in sample tissue from healthy cell lines or tumors. A number of studies have examined the problems of tumor classification: class discovery, the problem of defining a number of classes of tumors using the data from a DNA chip, and class prediction, the problem of accurately classifying an unknown tumor, given expression data from the unknown tumor and from a learning set. The current work has applied phylogenetic methods to both problems. To solve the class discovery problem, we impose a metric on a set of tumors as a function of their gene expression levels, and impose a tree structure on this metric, using standard tree fitting methods borrowed from the field of phylogenetics. Phylogenetic methods provide a simple way of imposing a clear hierarchical relationship on the data, with branch lengths in the classification tree representing the degree of separation witnessed. We tested our method for class discovery on two data sets: a data set of 87 tissues, comprised mostly of small, round, blue-cell tumors (SRBCTs), and a data set of 22 breast tumors. We fit the 87 samples of the first set to a classification tree, which neatly separated into four major clusters corresponding exactly to the four groups of tumors, namely neuroblastomas, rhabdomyosarcomas, Burkitt's lymphomas, and the Ewing's family of tumors. The classification tree built using the breast cancer data separated tumors with BRCA1 mutations from those with BRCA2 mutations, with sporadic tumors separated from both groups and from each other. We also demonstrate the flexibility of the class discovery method with regard to standard resampling methodology such as jackknifing and noise perturbation. To solve the class prediction problem, we built a classification tree on the learning set, and then sought the optimal placement of each test sample within the classification tree. We tested this method on the SRBCT data set, and classified each tumor successfully.  相似文献   

19.
In comparative genomics, algorithms that sort permutations by reversals are often used to propose evolutionary scenarios of rearrangements between species. One of the main problems of such methods is that they give one solution while the number of optimal solutions is huge, with no criteria to discriminate among them. Bergeron et al. started to give some structure to the set of optimal solutions, in order to be able to deliver more presentable results than only one solution or a complete list of all solutions. However, no algorithm exists so far to compute this structure except through the enumeration of all solutions, which takes too much time even for small permutations. Bergeron et al. state as an open problem the design of such an algorithm. We propose in this paper an answer to this problem, that is, an algorithm which gives all the classes of solutions and counts the number of solutions in each class, with a better theoretical and practical complexity than the complete enumeration method. We give an example of how to reduce the number of classes obtained, using further constraints. Finally, we apply our algorithm to analyse the possible scenarios of rearrangement between mammalian sex chromosomes.  相似文献   

20.
The feature selection addresses the issue of developing accurate models for classification in data mining. The aggregated data collection from distributed environment for feature selection makes the problem of accessing the relevant inputs of individual data records. Preserving the privacy of individual data is often critical issue in distributed data mining. In this paper, it proposes the privacy preservation of individual data for both feature and sub-feature selection based on data mining techniques and fuzzy probabilities. For privacy purpose, each party maintains their privacy as the instruction of data miner with the help of fuzzy probabilities as alias values. The techniques have developed for own database of data miner in distributed network with fuzzy system and also evaluation of sub-feature value included for the processing of data mining task. The feature selection has been explained by existing data mining techniques i.e., gain ratio using fuzzy optimization. The estimation of gain ratio based on the relevant inputs for the feature selection has been evaluated within the expected upper and lower bound of fuzzy data set. It mainly focuses on sub-feature selection with privacy algorithm using fuzzy random variables among different parties in distributed environment. The sub-feature selection is uniquely identified for better class prediction. The algorithm provides the idea of selecting sub-feature using fuzzy probabilities with fuzzy frequency data from data miner’s database. The experimental result shows performance of our findings based on real world data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号