共查询到20条相似文献,搜索用时 0 毫秒
1.
Eva Untersmayr Giovanna Bises Philipp Starkl Charles L. Bevins Otto Scheiner George Boltz-Nitulescu Fritz Wrba Erika Jensen-Jarolim 《PloS one》2010,5(2)
Background
IgE antibodies play a paramount role in the pathogenesis of various intestinal disorders. To gain insights in IgE-mediated pathophysiology of the gut, we investigated the expression of the high affinity IgE receptor FcεRI in human intestinal epithelium.Methodology/Principal Findings
FcεRI α-chain, as detected by immunohistochemistry, was positive in epithelial cells for eight of eleven (8/11) specimens from colon cancer patients and 5/11 patients with inflammation of the enteric mucosa. The FcεRIα positive epithelial cells co-expressed FcεRIγ, whereas with one exception, none of the samples was positive for the β-chain in the epithelial layer. The functionality of FcεRI was confirmed in situ by human IgE binding. In experiments with human intestinal tumor cell lines, subconfluent Caco-2/TC7 and HCT-8 cells were found to express the α- and γ-chains of FcεRI and to bind IgE, whereas confluent cells were negative for γ-chains.Conclusions/Significance
Our data provide the first evidence that the components of a functional FcεRI are in vitro expressed by the human intestinal epithelial cells depending on differentiation and, more importantly, in situ in epithelia of patients with colon cancer or gastrointestinal inflammations. Thus, a contribution of FcεRI either to immunosurveillance or pathophysiology of the intestinal epithelium is suggested. 相似文献2.
Kelly N. Messingham Heather M. Holahan Alexandra S. Frydman Colleen Fullenkamp Rupasree Srikantha Janet A. Fairley 《PloS one》2014,9(9)
Bullous pemphigoid (BP) is an autoimmune blistering disease mediated by autoantibodies targeting BP180 (type XVII collagen). Patient sera and tissues typically have IgG and IgE autoantibodies and elevated eosinophil numbers. Although the pathogenicity of the IgE autoantibodies is established in BP, their contribution to the disease process is not well understood. Our aims were two-fold: 1) To establish the clinical relationships between total and BP180-specific IgE, eosinophilia and other markers of disease activity; and 2) To determine if eosinophils from BP patients express the high affinity IgE receptor, FcεRI, as a potential mechanism of action for IgE in BP. Our analysis of 48 untreated BP patients revealed a correlation between BP180 IgG and both BP180 IgE and peripheral eosinophil count. Additionally, we established a correlation between total IgE concentration and both BP180 IgE levels and eosinophil count. When only sera from patients (n = 16) with total IgE≥400 IU/ml were analyzed, BP180 IgG levels correlated with disease severity, BP230 IgG, total circulating IgE and BP180 IgE. Finally, peripheral eosinophil count correlated more strongly with levels of BP180 IgE then with BP180 IgG. Next, eosinophil FcεRI expression was investigated in the blood and skin using several methods. Peripheral eosinophils from BP patients expressed mRNA for all three chains (α, β and γ) of the FcεRI. Surface expression of the FcεRIα was confirmed on both peripheral and tissue eosinophils from most BP patients by immunostaining. Furthermore, using a proximity ligation assay, interaction of the α- and β-chains of the FcεRI was observed in some biopsy specimens, suggesting tissue expression of the trimeric receptor form in some patients. These studies provide clinical support for the relevance of IgE in BP disease and provide one mechanism of action of these antibodies, via binding to the FcεRI on eosinophils. 相似文献
3.
4.
Martin P. Alphonse Arash S. Saffar Lianyu Shan Kent T. HayGlass F. Estelle R. Simons Abdelilah S. Gounni 《PloS one》2008,3(4)
The high affinity IgE receptor, FcεRI, plays a key role in the immunological pathways involved in allergic asthma. Previously we have demonstrated that human neutrophils isolated from allergic asthmatics express a functional FcεRI, and therefore it was of importance to examine the factors regulating its expression. In this study, we found that neutrophils from allergic asthmatics showed increased expression of FcεRI-α chain surface protein, total protein and mRNA compared with those from allergic non asthmatics and healthy donors (p<0.001). Interestingly, in neutrophils isolated from allergic asthmatics, FcεRI-α chain surface protein and mRNA expression were significantly greater during the pollen season than outside the pollen season (n = 9, P = 0.001), an effect which was not observed either in the allergic non asthmatic group or the healthy donors (p>0.05). Allergen exposure did not affect other surface markers of neutrophils such as CD16/FcγRIII or IL-17R. In contrast to stimulation with IgE, neutrophils incubated with TH2 cytokines IL-9, GM-CSF, and IL-4, showed enhanced FcεRI-α chain surface expression. In conclusion, these results suggest that enhanced FcεRI expression in human neutrophils from allergic asthmatics during the pollen season can make them more susceptible to the biological effects of IgE, providing a possible new mechanism by which neutrophils contribute to allergic asthma. 相似文献
5.
Regulation of Fc?RI Signaling in Mast Cells by G Protein-coupled Receptor Kinase 2 and Its RH Domain
Hariharan Subramanian Kshitij Gupta Narayanan Parameswaran Hydar Ali 《The Journal of biological chemistry》2014,289(30):20917-20927
Agonist-induced phosphorylation of G protein-coupled receptors (GPCRs) by GPCR kinases (GRKs) promotes their desensitization and internalization. Here, we sought to determine the role of GRK2 on FcϵRI signaling and mediator release in mast cells. The strategies utilized included lentiviral shRNA-mediated GRK2 knockdown, GRK2 gene deletion (GRK2flox/flox/cre recombinase) and overexpression of GRK2 and its regulator of G protein signaling homology (RH) domain (GRK2-RH). We found that silencing GRK2 expression caused ∼50% decrease in antigen-induced Ca2+ mobilization and degranulation but resulted in ablation of cytokine (IL-6 and IL-13) generation. The effect of GRK2 on cytokine generation does not require its catalytic activity but is mediated via the phosphorylation of p38 and Akt. Overexpression of GRK2 or its RH domain (GRK2-RH) enhanced antigen-induced mast cell degranulation and cytokine generation without affecting the expression levels of any of the FcϵRI subunits (α, β, and γ). GRK2 or GRK2-RH had no effect on antigen-induced phosphorylation of FcϵRIγ or Src but enhanced tyrosine phosphorylation of Syk. These data demonstrate that GRK2 modulates FcϵRI signaling in mast cells via at least two mechanisms. One involves GRK2-RH and modulates tyrosine phosphorylation of Syk, and the other is mediated via the phosphorylation of p38 and Akt. 相似文献
6.
Abstract The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences. To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations. The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions. The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor. 相似文献
7.
Wenxia Ying Gabriel Huerta Stanly Steinberg Martha Zúñiga 《Bulletin of mathematical biology》2009,71(8):1967-2024
Biophysicists use single particle tracking (SPT) methods to probe the dynamic behavior of individual proteins and lipids in cell membranes. The mean squared displacement (MSD) has proven to be a powerful tool for analyzing the data and drawing conclusions about membrane organization, including features like lipid rafts, protein islands, and confinement zones defined by cytoskeletal barriers. Here, we implement time series analysis as a new analytic tool to analyze further the motion of membrane proteins. The experimental data track the motion of 40 nm gold particles bound to Class I major histocompatibility complex (MHCI) molecules on the membranes of mouse hepatoma cells. Our first novel result is that the tracks are significantly autocorrelated. Because of this, we developed linear autoregressive models to elucidate the autocorrelations. Estimates of the signal to noise ratio for the models show that the autocorrelated part of the motion is significant. Next, we fit the probability distributions of jump sizes with four different models. The first model is a general Weibull distribution that shows that the motion is characterized by an excess of short jumps as compared to a normal random walk. We also fit the data with a chi distribution which provides a natural estimate of the dimension d of the space in which a random walk is occurring. For the biological data, the estimates satisfy 1<d<2, implying that particle motion is not confined to a line, but also does not occur freely in the plane. The dimension gives a quantitative estimate of the amount of nanometer scale obstruction met by a diffusing molecule. We introduce a new distribution and use the generalized extreme value distribution to show that the biological data also have an excess of long jumps as compared to normal diffusion. These fits provide novel estimates of the microscopic diffusion constant. 相似文献
8.
Lubica Draberova Tomas Paulenda Ivana Halova Lucie Potuckova Viktor Bugajev Monika Bambouskova Magda Tumova Petr Draber 《PloS one》2015,10(12)
Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane. 相似文献
9.
Doris Heinrich Mary Ecke Marion Jasnin Ulrike Engel Günther Gerisch 《Biophysical journal》2014,106(5):1079-1091
Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ∼40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration. 相似文献
10.
Victor A. McPherson Stephanie Everingham Robert Karisch Julie A. Smith Christian M. Udell Jimin Zheng Zongchao Jia Andrew W. B. Craig 《Molecular and cellular biology》2009,29(2):389-401
This study investigates the roles of Fer-CIP4 homology (FCH)-Bin/amphiphysin/Rvs (F-BAR) and SH2 domains of Fes protein tyrosine kinase in regulating its activation and signaling downstream of the high-affinity immunoglobulin G (IgE) receptor (FcɛRI) in mast cells. Homology modeling of the Fes F-BAR domain revealed conservation of some basic residues implicated in phosphoinositide binding (R113/K114). The Fes F-BAR can bind phosphoinositides and induce tubulation of liposomes in vitro. Mutation of R113/K114 to uncharged residues (RK/QQ) caused a significant reduction in phosphoinositide binding in vitro and a more diffuse cytoplasmic localization in transfected COS-7 cells. RBL-2H3 mast cells expressing full-length Fes carrying the RK/QQ mutation show defects in FcɛRI-induced Fes tyrosine phosphorylation and degranulation compared to cells expressing wild-type Fes. This correlated with reduced localization to Lyn kinase-containing membrane fractions for the RK/QQ mutant compared to wild-type Fes in mast cells. The Fes SH2 domain also contributes to Fes signaling in mast cells, via interactions with the phosphorylated FcɛRI β chain and the actin regulatory protein HS1. We show that Fes phosphorylates C-terminal tyrosine residues in HS1 implicated in actin stabilization. Thus, coordinated actions of the F-BAR and SH2 domains of Fes allow for coupling to FcɛRI signaling and potential regulation the actin reorganization in mast cells.Mast cells reside in connective and mucosal tissues and play a key protective role in the immune response to helminth infection (13, 21), sepsis (39), and snake or bee venoms (42). Mast cells express FcɛRI, which becomes sensitized to antigens or allergens upon immunoglobulin E (IgE) binding. Aggregation of FcɛRI by multivalent antigens causes the release of preformed mediators by degranulation and the de novo production of lipid mediators and cytokines (1, 52). Release of these mediators causes increased vascular permeability, leukocyte recruitment and activation, and inflammation (41). Aberrant mast cell activation is implicated in IgE-mediated type I hypersensitivity reactions including anaphylaxis, allergic rhinitis, and asthma (20). FcɛRI is a tetrameric receptor composed of an IgE-binding α chain and of β and γ chains containing immunoreceptor tyrosine-based activation motifs that become phosphorylated following multivalent antigen-mediated clustering of FcɛRI and activation of Src family protein tyrosine kinases (PTKs), primarily involving Lyn (51). Lyn phosphorylates and activates both positive effectors of FcɛRI signaling (e.g., Syk PTK) and key negative regulators (e.g., Shp-1 and SHIP) that serve to limit mast cell activation (28, 46, 69).Fes (the mammalian orthologue of the v-Fps and v-Fes oncoproteins from avian [57, 58] and feline [15, 56] retroviruses) and Fer are closely related PTKs that become activated following FcɛRI aggregation in mast cells (10). Surprisingly, FcɛRI-induced tyrosine phosphorylation of Fes and Fer does not require their kinase activities (55) and is almost entirely dependent on Lyn (67). Through the use of transgenic mouse models, evidence for both unique and redundant functions for Fes and Fer has been described in regulating hematopoiesis (55) and limiting the innate immune response (22, 40, 50, 72). In mast cells, we have shown that Fer promotes activation of p38 mitogen-activated protein kinase and chemotaxis of mast cells (10). We also found that Fer and Fes PTKs contribute to FcɛRI-evoked phosphorylation of platelet-endothelial cell adhesion molecule 1 (PECAM-1) (67).Each of the Fes and Fer PTKs is composed of an N-terminal regulatory domain containing a Fer-CIP4 homology (FCH) domain followed by several predicted coiled-coils (CC), a central SH2 domain, and C-terminal PTK domain (19). It is worth noting that early studies pointed toward an important role for the N-terminal domain of v-Fps for its transforming activity and membrane localization (5, 63). Several recent studies have defined the FCH and first CC domain (amino acids 1 to 300) in Fer, CIP4, and other pombe Cdc15 homology (PCH) family adaptor proteins as an F-BAR domain (also termed extended FCH or EFC domain) (reviewed in references 3 and 9). The F-BAR domain was found to constitute a novel phosphoinositide-binding domain that can promote tubulation of liposomes in vitro and membranes in vivo (27, 33, 66). The crystal structures of F-BAR domains from several PCH adaptors were recently solved (27, 59). The F-BAR module was shown to consist of a triple helical bundle that forms a homodimer, with a concave surface rich in basic residues that have recently been shown to contact phospholipids in curved membranes (16). In vitro studies using the Fer F-BAR domain have shown that the F-BAR domain binds strongly to phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]; however, the Fer F-BAR is relatively weak compared with the adaptor protein FBP17 at inducing membrane tubulation (66). Liposome sedimentation assays have identified several conserved basic residues required for F-BAR domain binding to PI(4,5)P2(66). The substitution of R113/K114 to glutamines (RK/QQ) in FBP17 reduced phosphoinositide binding by 80% (66). A recent electron cryoelectron microscopy study provided insights into binding of F-BAR dimers to flat and curved membranes via different binding faces (16). This study also confirmed that R113/K114 residues (in CIP4) constitute a site of direct interaction with the liposomes. Interestingly, microdomains of the plasma membrane rich in PI(4,5)P2 are sites of dynamic actin assembly (47) and endocytosis (4, 31). Previous studies have described Fes localization to a variety of subcellular structures, including endocytic vesicles (71), the trans-Golgi apparatus (71), microtubules (37), and focal adhesions (44). The rapid activation of Fes and Fer PTKs upon FcɛRI aggregation on mast cells (10) would suggest that there is a mechanism by which Fes localizes at or near the plasma membrane. Phosphoinositide-binding via the F-BAR domain of Fes and Fer PTKs may promote their recruitment to the plasma membrane prior to their activation by cell surface receptors such as FcɛRI. The potential colocalization with endocytosis and actin assembly regulators may allow for regulation of receptor endocytosis or chemotaxis of mast cells by Fes/Fer PTKs. A recent study implicates Rab5 GTPase and its exchange factor RabGEF1/Rabex-5 in promoting internalization of FcɛRI following clustering by antigens (34). It is worth noting that defects in internalization of Toll-like receptor 4 and transferrin receptor were observed in Fes-deficient macrophages (48), and there is a potential role for Fes in regulating internalization of mast cell receptors.In this study, we provide novel insights into the phospholipid binding and liposome tubulating properties of the Fes F-BAR domain. Mutation of two conserved basic residues within the Fes F-BAR domain (RK/QQ) reduced phospholipid binding in vitro, and membrane localization in vivo. In transfected RBL-2H3 mast cells, the Fes harboring the RK/QQ mutation (FesRK/QQ) displayed reduced FcɛRI-evoked tyrosine phosphorylation compared to wild-type Fes (FesWT), which correlated with reduced localization to Lyn-containing membranes in mast cells. The SH2 domain of Fes was found to interact with several phosphoproteins in mast cells, including FcɛRI and HS1, an actin regulator and cortactin homologue. We found that Fes contributes to HS1 phosphorylation at C-terminal residues implicated in actin branch stabilization, and we present a model for how F-BAR-containing adaptor proteins and PTKs may coordinate actin-driven endocytosis in mast cells. 相似文献
11.
ISABEL SOTO-CRUZ JANET M. OLIVER ENRIQUE ORTEGA 《Journal of receptor and signal transduction research》2013,33(1):67-81
Aggregation of the multichain (α β γ2) high-affinity IgE receptor (Fcε RI) initiates a signaling cascade that results in the release of allergic mediators. The cytoplasmic tails of the Fcε RI-β and -γ subunits contain immunoreceptor tyrosine-based activation motifs (ITAMs). Phosphorylation of the γ ITAM mediates activation of Syk kinase and is sufficient for triggering the responses induced by Fcε RI crosslinking. Phosphorylation of the β ITAM is insufficient to mediate cell activation. The rat β ITAM contains three tyrosines (Tyr218, Tyr224, and Tyr228) with an intermediate noncanonical tyrosine. Synthetic peptides based on the ITAM of the Fcε RI-β subunit were used to investigate the role of each phosphotyrosine in the binding of signaling proteins to this motif. Among the proteins that bind to phosphorylated β ITAM are Syk, Grb2, Shc, SHIP, and SHP-1, and binding does not depend on previous cell activation. Nonphosphorylated peptides do not bind these proteins. Syk binding to β -peptides is dependent on the number and position of phosphotyrosines in the ITAM. Phosphorylation of Tyr218 seems to be most important for Syk binding. Recruitment of Syk and other signaling proteins to the β -subunit might be important for its amplifier role. 相似文献
12.
《Bioscience, biotechnology, and biochemistry》2013,77(2):382-384
Human skin mast cells proliferated in the presence of interleukin (IL)-4+SCF (expanding 18-fold in 8 weeks) and acquired profound responsiveness towards high affinity IgE receptor (FcεRI) cross-linking, liberating about 75% of their histamine. In a proof-of-concept, we found that these cells are useful for pharmacological testing. Even a subtle inhibition of degranulation can be visualized. This model might prove valuable in tests of novel anti-allergic drugs. 相似文献
13.
Ruben J. Torres Muthangi Subramanyam Guillermo A. Altenberg Luis Reuss 《The Journal of general physiology》1997,109(1):61-72
Necturus gallbladder epithelial cells bathed in 10 mM HCO3/1% CO2 display sizable basolateral membrane conductances for Cl− (GCl
b) and K + (GK
b). Lowering the osmolality of the apical bathing solution hyperpolarized both apical and basolateral membranes and increased the K +/Cl− selectivity of the basolateral membrane. Hyperosmotic solutions had the opposite effects. Intracellular free-calcium concentration ([Ca2+]i) increased transiently during hyposmotic swelling (peak at ∼30 s, return to baseline within ∼90 s), but chelation of cell Ca2+ did not prevent the membrane hyperpolarization elicited by the hyposmotic solution. Cable analysis experiments showed that the electrical resistance of the basolateral membrane decreased during hyposmotic swelling and increased during hyperosmotic shrinkage, whereas the apical membrane resistance was unchanged in hyposmotic solution and decreased in hyperosmotic solution. We assessed changes in cell volume in the epithelium by measuring changes in the intracellular concentration of an impermeant cation (tetramethylammonium), and in isolated polarized cells measuring changes in intracellular calcein fluorescence, and observed that these epithelial cells do not undergo measurable volume regulation over 10–12 min after osmotic swelling. Depolarization of the basolateral membrane voltage (Vcs) produced a significant increase in the change in Vcs elicited by lowering basolateral solution [Cl−], whereas hyperpolarization of Vcs had the opposite effect. These results suggest that: (a) Hyposmotic swelling increases GK
b and decreases G Cl
b. These two effects appear to be linked, i.e., the increase in G K
b produces membrane hyperpolarization, which in turn reduces G Cl
b. ( b) Hyperosmotic shrinkage has the opposite effects on GK
b and G Cl
b. ( c) Cell swelling causes a transient increase in [Ca2+]i, but this response may not be necessary for the increase in GK
b during cell swelling. 相似文献
14.
Katsuhiko Omoe Wataru Nunomura Hidehito Kato Zhong-Juan Li Osamu Igarashi Minako Araake Keigo Sano Hisaya K. Ono Yohei Abe Dong-Liang Hu Akio Nakane Hiroshi Kiyono Yuichi Takakuwa Kunihiro Shinagawa Takehiko Uchiyama Ken'ichi Imanishi 《The Journal of biological chemistry》2010,285(40):30427-30435
In mice implanted with an osmotic pump filled with the superantigen (SAG) staphylococcal enterotoxin A (SEA), the Vβ3+CD4+ T cells exhibited a high level of expansion whereas the Vβ11+CD4+ T cells exhibited a mild level of expansion. In contrast, in mice implanted with an osmotic pump filled with SE-like type P (SElP, 78.1% homologous with SEA), the Vβ11+CD4+ T cells exhibited a high level of expansion while the Vβ3+CD4+ T cells exhibited a low level of expansion, suggesting that the level of the SAG-induced response is determined by the affinities between the TCR Vβ molecules and SAG. Analyses using several hybrids of SEA and SElP showed that residue 206 of SEA determines the response levels of Vβ3+CD4+ and Vβ11+CD4+ T cells both in vitro and in vivo. Analyses using the above-mentioned hybrids showed that the binding affinities between SEA and the Vβ3/Vβ11 β chains and between SEA-MHC class II-molecule complex and Vβ3+/Vβ11+ CD4+ T cells determines the response levels of the SAG-reactive T cells both in vitro and in vivo. 相似文献
15.
Circadian rhythms in physiology and behavior are ultimately regulated at the hypothalamic level by the suprachiasmatic nuclei (SCN). This central oscillator transduces photic information to the cellular clocks in the periphery through the autonomic nervous system and the neuroendocrine system. The fact that these two systems have been shown to modulate leukocyte physiology supports the concept that the circadian component is an important aspect of hypothalamic-immune communication. Circadian disruption has been linked to immune dysregulation, and recent reports suggest that several circadian clock genes, in addition to their time-keeping role, are involved in the immune response. In this overview, we summarize the findings demonstrating that Natural Killer (NK) cell function is under circadian control. Special issue article in honor of George Fink. 相似文献
16.
Tian Xueyi Yu Qianxia Lin Canjia Zhao Tong Zou Pu Liao Jingping 《Journal of plant research》2021,134(4):797-802
Journal of Plant Research - In a typical cincinnus, the neighboring two flowers are generally enantiomorphic, which leads to the pendulum symmetry of the entire cyme. While in a two-flowered... 相似文献
17.
18.
19.