首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
There is strong community-wide interest in applying molecular techniques to fungal species delimitation and identification, but selection of a standardized region or regions of the genome has not been finalized. A single marker, the ribosomal DNA internal transcribed spacer region, has frequently been suggested as the standard for fungi. We used a group of closely related blue stain fungi associated with the mountain pine beetle (Dendroctonus ponderosae Hopkins) to examine the success of such single-locus species identification, comparing the internal transcribed spacer with four other nuclear markers. We demonstrate that single loci varied in their utility for identifying the six fungal species examined, while use of multiple loci was consistently successful. In a literature survey of 21 similar studies, individual loci were also highly variable in their ability to provide consistent species identifications and were less successful than multilocus diagnostics. Accurate species identification is the essence of any molecular diagnostic system, and this consideration should be central to locus selection. Moreover, our study and the literature survey demonstrate the value of using closely related species as the proving ground for developing a molecular identification system. We advocate use of a multilocus barcode approach that is similar to the practice employed by the plant barcode community, rather than reliance on a single locus.  相似文献   

2.
We investigated the effect of water potential (WP) on the growth of, and interaction between, two ophiostomatoid fungi, Grosmannia clavigera and Ophiostoma montium, associated with the mountain pine beetle (Dendroctonus ponderosae). The WP of malt extract agar was amended by adding potassium chloride (KCl) or sucrose. Growth of both fungi decreased with WP on KCl-amended media. Growth of G. clavigera also decreased with WP on sucrose-amended media, although growth was stimulated on these media compared to unamended treatments. Growth of O. montium remained relatively constant on sucrose-amended media, confounding the effect of WP on this species. Both fungi were able to colonize media occupied by the other species, but at a slower rate than on unoccupied media, indicating competition. In most treatments, G. clavigera grew faster than O. montium and colonized a greater area when the two fungi were inoculated concurrently but distant to one another on a Petri dish. However, when each fungus was inoculated adjacent to a 10-d-old well-established colony of the other species, O. montium colonized occupied media more effectively than G. clavigera considering the growth rate of each species alone. Thus, G. clavigera dominated primary (uncolonized) resources on most media, whereas O. montium was more effective in colonizing secondary (occupied) resources. The differential response of the two fungi to sucrose indicates that they may use different carbon sources, or use different carbon sources at different rates, in the tree. Fine-scale resource partitioning, differences in primary and secondary resource capture abilities, and the non-equilibrium dynamics in an attacked tree over time, could all act to promote the co-existence of two unit-restricted dispersers on a discontinuous resource.  相似文献   

3.
Three different mathematical approaches are combined to develop a spatial framework in which risk of mountain pine beetle (MPB) attack on individual hosts may be assessed. A density-based partial differential equation model describes the dispersal and focusing behavior of MPB. A local projection onto a system of ordinary differential equations predicts the consequences of the density equations at individual hosts. The bifurcation diagram of these equations provides a natural division into categories of risk for each host. A stem-competition model links host vigor to stand age and demographics. Coupled together, these models illuminate spatial risk structures which may also shed light on the role of climatic variables in population outbreaks. Preliminary results suggest that stand microclimate has much greater influence on risk of attack than host vigor and stand age.  相似文献   

4.
The transmission of microbial symbionts across animal species could strongly affect their biology and evolution, but our understanding of transmission patterns and dynamics is limited. Army ants (Formicidae: Dorylinae) and their hundreds of closely associated insect guest species (myrmecophiles) can provide unique insights into interspecific microbial symbiont sharing. Here, we compared the microbiota of workers and larvae of the army ant Eciton burchellii with those of 13 myrmecophile beetle species using 16S rRNA amplicon sequencing. We found that the previously characterized specialized bacterial symbionts of army ant workers were largely absent from ant larvae and myrmecophiles, whose microbial communities were usually dominated by Rickettsia, Wolbachia, Rickettsiella and/or Weissella. Strikingly, different species of myrmecophiles and ant larvae often shared identical 16S rRNA genotypes of these common bacteria. Protein-coding gene sequences confirmed the close relationship of Weissella strains colonizing army ant larvae, some workers and several myrmecophile species. Unexpectedly, these strains were also similar to strains infecting dissimilar animals inhabiting very different habitats: trout and whales. Together, our data show that closely interacting species can share much of their microbiota, and some versatile microbial species can inhabit and possibly transmit across a diverse range of hosts and environments.  相似文献   

5.
Fifteen million hectares of pine forests in western Canada have been attacked by the mountain pine beetle (Dendroctonus ponderosae; MPB), leading to devastating economic losses. Grosmannia clavigera and Leptographium longiclavatum, are two fungi intimately associated with the beetles, and are crucial components of the epidemic. To detect and discriminate these two closely related pathogens, we utilized a method based on ligase-mediated nucleotide discrimination with padlock probe technology, and signal amplification by hyperbranched rolling circle amplification (HRCA). Two padlock probes were designed to target species-specific single nucleotide polymorphisms (SNPs) located at the inter-generic spacer 2 region and large subunit of the rRNA respectively, which allows discrimination between the two species. Thirty-four strains of G. clavigera and twenty-five strains of L. longiclavatum representing a broad geographic origin were tested with this assay. The HRCA results were largely in agreement with the conventional identification based on morphology or DNA-based methods. Both probes can also efficiently distinguish the two MPB-associated fungi from other fungi in the MPB, as well as other related fungi in the order Ophiostomatales. We also tested this diagnostic method for the direct detection of these fungi from the DNA of MPB. A nested PCR approach was used to enrich amplicons for signal detection. The results confirmed the presence of these two fungi in MPB. Thus, the padlock probe assay coupled with HRCA is a rapid, sensitive and reproducible method for the identification and detection of these ophiostomatoid fungi.  相似文献   

6.
7.
Differences in temperature ranges and optima among poikilothermic partners in symbioses can have profound effects on their interactions and stability. In this study, we investigated how the two mutualist mycangial fungi (Ceratocystiopsis brevicomi and Entomocorticium sp. B) associated with the western pine beetle, Dendroctonus brevicomis, respond to temperature in vitro. Little variability in growth rate at the various temperatures tested occurred among isolates of C. brevicomi either within or among sites. In contrast, E. sp. B exhibited highly variable responses to mid-range temperatures among sites and within some sites, and, unlike C. brevicomi, grew not at all or only very poorly at the highest and lowest temperatures tested. This variability affected both optimal temperature and maximum growth rate. The high variability in response to some temperatures among isolates of E. sp. B in some populations indicates that the ability to capture spatial and nutritional resources can vary greatly within this species which may have considerable impact on the outcome of both inter- and intra-specific competition among the fungi within trees and the short- and long-term dynamics of the fungi with the host beetle.  相似文献   

8.
Persistence of forage grasses is enhanced through the deliberate and selective use of symbiotic fungal endophytes that confer benefits, particularly pest resistance. However, they have also been implicated in reduced plant community diversity as a result of directly or indirectly enhancing competitive ability. A relatively underexplored mechanism by which endophytes might influence pasture plant composition is by altering the biotic or abiotic soil conditions. To examine the soil conditioning effects of forage grass species and their fungal symbionts we tested the responses of three pasture plants, perennial ryegrass, prairie grass, and white clover in nine different soils that had been conditioned by monocultures of endophyte-containing (E+), or endophyte-free (E?), perennial ryegrass, tall fescue, or meadow fescue. Conditioning grass species had little effect on the responses of perennial ryegrass and prairie grass regardless of E+ or E? treatments. In contrast, conditioning species had a strong effect on the response of white clover, resulting in reduced biomass when grown in perennial ryegrass conditioned soils. The presence of endophyte also had significant growth consequences for white clover, but was either positive or negative depending on the conditioning grass species. In comparison to their respective E? treatments, E+ tall and meadow fescue conditioned soils resulted in reduced biomass of white clover, whereas E+ perennial ryegrass conditioned soils resulted in increased biomass of white clover. Among the conditioning strains (AR1, AR37, NEA2, WE) of E+ perennial ryegrass, white clover showed significantly different responses, but all responses were positive in comparison to the E? treatment. By examining the effects of several grass species and endophyte strains, we were able to determine the relative importance of grass species vs. fungal symbiont on soil conditioning. Overall, the conditioning effect of grass species was stronger than the effects associated with endophyte, particularly with regard to the response of white clover. We conclude that both grass species and their fungal endophytes can influence pasture plant community composition through plant–soil feedback.  相似文献   

9.
Abstract.  1. Fungus-growing termites live in an obligate mutualistic symbiosis with Termitomyces fungi. The functions of the fungal symbiont have been hypothesised to differ between species and to range from highly specific roles of providing plant-degrading enzymes complementary to termite gut enzymes, to non-specific roles of providing protein-rich food to the termites.
2. Termite species with unspecialised fungal symbionts are predicted to be associated with a wider range of symbionts than species with specialised symbionts. Recent DNA data have confirmed this prediction, but evidence for differences in functional specificity has been sparse and indirect.
3. Here the consequences of symbiont interaction specificity are experimentally tested by reciprocally exchanging the fungal symbionts of sympatric colonies of Macrotermes natalensis and Odontotermes badius , which were inferred to have specialised and non-specialised symbionts respectively.
4. As expected, survival of O. badius termites on M. natalensis fungus was not significantly worse than on their own fungus, but survival of M. natalensis termites on O. badius fungus was significantly reduced.
5. This asymmetric result confirms that symbiont roles differ significantly between macrotermitine genera and indicates that symbiont transplantation experiments are a powerful tool for testing the functional details of mutualistic symbioses.  相似文献   

10.
1. Coniferous trees deploy a combination of constitutive (pre‐existing) and induced (post‐invasion), structural and biochemical defences against invaders. Induced responses can also alter host suitability for other organisms sharing the same host, which may result in indirect, plant‐mediated interactions between different species of attacking organisms. 2. Current range and host expansion of the mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) from lodgepole pine‐dominated forests to the jack pine‐dominated boreal forests provides a unique opportunity to investigate whether the colonisation of jack pine (Pinus banksiana Lamb.) by MPB will be affected by induced responses of jack pine to a native herbaceous insect species: the jack pine budworm (Choristoneura pinus pinus Freeman; JPBW). 3. We simulated MPB attacks with one of its fungal associates, Grosmannia clavigera Robinson‐Jeffrey & Davidson, and tested induction of either herbivory by JPBW or inoculation with the fungus followed by a challenge treatment with the other organism on jack pine seedlings and measured and compared monoterpene responses in needles. 4. There was clear evidence of an increase in jack pine resistance to G. clavigera with previous herbivory, indicated by smaller lesions in response to fungal inoculations. In contrast, although needle monoterpenes greatly increased after G. clavigera inoculation and continued to increase during the herbivory challenge, JPBW growth was not affected, but JPBW increased the feeding rate to possibly compensate for altered host quality. 5. Jack pine responses varied greatly and depended on whether seedlings were treated with single or multiple organisms, and their order of damage.  相似文献   

11.
12.
Warming climate is allowing tree‐killing bark beetles to expand their ranges and access naïve and semi‐naïve conifers. Conifers respond to attack using complex mixtures of chemical defences that can impede beetle success, but beetles exploit some compounds for host location and communication. Outcomes of changing relationships will depend on concentrations and compositions of multiple host compounds, which are largely unknown. We analysed constitutive and induced chemistries of Dendroctonus ponderosae's primary historical host, Pinus contorta, and Pinus albicaulis, a high‐elevation species whose encounters with this beetle are transitioning from intermittent to continuous. We quantified multiple classes of terpenes, phenolics, carbohydrates and minerals. Pinus contorta had higher constitutive allocation to, and generally stronger inducibility of, compounds that resist these beetle–fungal complexes. Pinus albicaulis contained higher proportions of specific monoterpenes that enhance pheromone communication, and lower induction of pheromone inhibitors. Induced P. contorta increased insecticidal and fungicidal compounds simultaneously, whereas P. albicaulis responses against these agents were inverse. Induced terpene accumulation was accompanied by decreased non‐structural carbohydrates, primarily sugars, in P. contorta, but not P. albicaulis, which contained primarily starches. These results show some host species with continuous exposure to bark beetles have more thoroughly integrated defence syndromes than less‐continuously exposed host species.  相似文献   

13.
14.
Bleaching (loss of symbiotic dinoflagellates) is known to significantly decrease the fitness of symbiotic marine invertebrates resulting in reduced growth, fecundity and survival. This report is the first to quantify the effects of bleaching on inorganic carbon (Ci) and ammonium flux, fixation and export of photosynthate to the host, in this case the giant clam Tridacna gigas. The 1998 bleaching event was found to decrease the zooxanthellae population 30‐fold when comparing bleached to non‐bleached clams. This resulted in significant increases in haemolymph Ci and decreases in haemolymph pH and glucose concentration, the predominant photosynthate exported from zooxanthellae in this symbiosis. There was also a decrease in the expression levels of host carbonic anhydrase, an enzyme involved in Ci transport to the zooxanthellae, and although host glutamine synthase levels were unaffected, the clams ability to assimilate ammonium was eliminated in bleached individuals, suggesting that photosynthate from the zooxanthellae is required for ammonium assimilation. In an artificial bleaching experiment haemolymph Ci (r2 = 0.97), pH (r2 = 0.94) and glucose levels (r2 = 0.95) were correlated to zooxanthellae numbers during both bleaching and recovery. Recovery of the zooxanthellae population, was enhanced four‐fold by the addition of organic and inorganic nutrients, as were related haemolymph characteristics. These results highlight the profound physiological changes that occur in symbiotic organisms during and after a bleaching event.  相似文献   

15.
We isolated ophiostomatoid fungi from bark beetles infesting Pinus densiflora and their galleries at 24 sites in Japan. Twenty-one ophiostomatoid fungi, including species of Ophiostoma, Grosmannia, Ceratocystiopsis, Leptographium, and Pesotum, were identified. Among these, 11 species were either newly recorded in Japan or were previously undescribed species. Some of these fungal species were isolated from several bark beetles, but other species were isolated from only a particular beetle species. Thus, it is suggested that some ophiostomatoid fungi have specific relationships with particular beetle species. In addition, fungus-beetle biplots from redundancy analysis (RDA) summarizing the effects of beetle ecological characteristics suggested that the association patterns between bark beetles and the associated fungi seemed to be related to the niches occupied by the beetles.  相似文献   

16.
To study the importance of insects in the establishment of fungi, stem sections of Norway spruce were placed in mature managed conifer forests in Southeast Sweden. After one or two flying seasons, fungal communities in wood, bark and bark beetle samples were analysed by molecular methods. Excluding insects from stem sections with cages had a significant effect on the fungal community. Small wounds made in the bark to mimic insect activity did not significantly alter the fungal community, indicating that physical holes as such only played a minor role for the insect interaction with the fungal community development. Several white rot species were significantly more abundant in stem sections with insect access and were also detected from bark beetle samples. This suggests that insects do contribute to the development of early fungal succession on dead wood, but that creating small disturbances in the bark only have a minor contributing effect.  相似文献   

17.
18.
19.
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak.  相似文献   

20.
BackgroundMountain pine beetles, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae), are native to western North America, but have recently begun to expand their range across the Canadian Rocky Mountains. The requirement for larvae to withstand extremely cold winter temperatures and potentially toxic host secondary metabolites in the midst of their ongoing development makes this a critical period of their lives.ResultsWe have uncovered global protein profiles for overwintering mountain pine beetle larvae. We have also quantitatively compared the proteomes for overwintering larvae sampled during autumn cooling and spring warming using iTRAQ methods. We identified 1507 unique proteins across all samples. In total, 33 proteins exhibited differential expression (FDR < 0.05) when compared between larvae before and after a cold snap in the autumn; and 473 proteins exhibited differential expression in the spring when measured before and after a steady incline in mean daily temperature. Eighteen proteins showed significant changes in both autumn and spring samples.ConclusionsThese first proteomic data for mountain pine beetle larvae show evidence of the involvement of trehalose, 2-deoxyglucose, and antioxidant enzymes in overwintering physiology; confirm and expand upon previous work implicating glycerol in cold tolerance in this insect; and provide new, detailed information on developmental processes in beetles. These results and associated data will be an invaluable resource for future targeted research on cold tolerance mechanisms in the mountain pine beetle and developmental biology in coleopterans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号