首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatophores isolated from cells of Rhodobacter sphaeroides exposed to hypertonic solutions were enriched in cardiolipin (CL). Because CL levels are raised by increasing the incubation time of R. sphaeroides in hypertonic solutions, it was possible to isolate chromatophores containing different CL amounts by starting from cells incubated in hypertonic solutions for different times. The functionality and stability of the photosynthetic proteins in chromatophore membranes having different CL levels were investigated. Reaction center (RC) stabilization with respect to thermal denaturation and photoxidative damage was observed by flash photolysis and fluorescence emission experiments in CL-enriched chromatophores. To gain detailed information about the structures of endogenous CLs, this lipid family was isolated and purified by preparative TLC, and characterized by high-resolution mass spectrometry. We conclude that osmotic shock can be used as a tool to modulate CL levels in isolated chromatophores and to change the composition of the RC lipid annulus, avoiding membrane artifacts introduced by the use of detergents.  相似文献   

2.
This minireview summarizes our present view of the supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides and Rhodobacter capsulatus. These two species present a close association between two reaction centers (RCs), one cytochrome (cyt) bc(1) and one cyt c. In R. sphaeroides, the RCs are only partially surrounded by LH1 complexes. This open ring of LH1 complexes is required for an efficient photoinduced cyclic electron transfer only under conditions where the quinone pool totally reduced. When the quinone pool is partially oxidized, a closed ring of LH1 complexes around the RCs does not impair the exchange of quinone molecules between the RC and the cyt bc(1) complex. To explain the efficient photochemistry of the various species which possess a RC surrounded by a closed ring of LH, it is proposed that their quinone pool is partially oxidized even under anaerobic condition.  相似文献   

3.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

4.
A highly active, large-scale preparation of ubiquinol:cytochrome c2 oxidoreductase (EC 1.10.2.2; cytochrome bc1 complex) has been obtained from Rhodobacter sphaeroides. The enzyme was solubilized from chromatophores by using dodecyl maltoside in the presence of glycerol and was purified by anion-exchange and gel filtration chromatography. The procedure yields 35 mg of pure bc1 complex from 4.5 g of membrane protein, and its consistently results in an enzyme preparation that catalyzes the reduction of horse heart cytochrome c with a turnover of 250-350 (mumol of cyt c reduced).(mumol of cyt c1)-1.s-1. The turnover number is at least double that of the best preparation reported in the literature [Ljungdahl, P. O., Pennoyer, J. D., Robertson, D. C., & Trumpower, B. L. (1987) Biochim. Biophys. Acta 891, 227-241]. The scale is increased 25-fold, and the yield is markedly improved by using this protocol. Four polypeptide subunits were observed by SDS-PAGE, with Mr values of 40K, 34K, 24K, and 14K. N-Terminal amino acid sequences were obtained for cytochrome c1, the iron-sulfur protein subunit, and for cytochrome b and were identical with the expected protein sequences deduced from the DNA sequence of the fbc operon, with the exceptions that a 22-residue fragment is processed off of the N-terminus of cytochrome c1 and the N-terminal methionine residue is cleaved off both the b cytochrome and iron-sulfur protein subunits. Western blotting experiments indicate that subunit IV is not a contaminating light-harvesting complex polypeptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The cytochrome (cyt) bc(1) complex (ubiquinol: cytochrome c oxidoreductase) is the central enzyme of mitochondrial and bacterial electron-transport chains. It is rich in prosthetic groups, many of which have significant but overlapping absorption bands in the visible spectrum. The kinetics of the cytochrome components of the bc(1) complex are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. This difference-wavelength (DW) approach has been used extensively in the development and testing of the Q-cycle mechanism of the bc(1) complex in Rhodobacter sphaeroides chromatophores. However, the DW approach does not fully compensate for spectral interference from other components, which can significantly distort both amplitudes and kinetics. Mechanistic elaboration of cyt bc(1) turnover requires an approach that overcomes this limitation. Here, we compare the traditional DW approach to a least squares (LS) analysis of electron transport, based on newly determined difference spectra of all individual components of cyclic electron transport in chromatophores. Multiple sets of kinetic traces, measured at different wavelengths in the absence and presence of specific inhibitors, were analyzed by both LS and DW approaches. Comparison of the two methods showed that the DW approach did not adequately correct for the spectral overlap among the components, and was generally unreliable when amplitude changes for a component of interest were small. In particular, it was unable to correct for extraneous contributions to the amplitudes and kinetics of cyt b(L). From LS analysis of the chromophoric components (RC, c(tot), b(H) and b(L)), we show that while the Q-cycle model remains firmly grounded, quantitative reevaluation of rates, amplitudes, delays, etc., of individual components is necessary. We conclude that further exploration of mechanisms of the bc(1) complex, will require LS deconvolution for reliable measurement of the kinetics of individual components of the complex in situ.  相似文献   

6.
We have recently established that the facultative phototrophic bacterium Rhodobacter sphaeroides, like the closely related Rhodobacter capsulatus species, contains both the previously characterized mobile electron carrier cytochrome c2 (cyt c2) and the more recently discovered membrane-anchored cyt cy. However, R. sphaeroides cyt cy, unlike that of R. capsulatus, is unable to function as an efficient electron carrier between the photochemical reaction center and the cyt bc1 complex during photosynthetic growth. Nonetheless, R. sphaeroides cyt cy can act at least in R. capsulatus as an electron carrier between the cyt bc1 complex and the cbb3-type cyt c oxidase (cbb3-Cox) to support respiratory growth. Since R. sphaeroides harbors both a cbb3-Cox and an aa3-type cyt c oxidase (aa3-Cox), we examined whether R. sphaeroides cyt cy can act as an electron carrier to either or both of these respiratory terminal oxidases. R. sphaeroides mutants which lacked either cyt c2 or cyt cy and either the aa3-Cox or the cbb3-Cox were obtained. These double mutants contained linear respiratory electron transport pathways between the cyt bc1 complex and the cyt c oxidases. They were characterized with respect to growth phenotypes, contents of a-, b-, and c-type cytochromes, cyt c oxidase activities, and kinetics of electron transfer mediated by cyt c2 or cyt cy. The findings demonstrated that both cyt c2 and cyt cy are able to carry electrons efficiently from the cyt bc1 complex to either the cbb3-Cox or the aa3-Cox. Thus, no dedicated electron carrier for either of the cyt c oxidases is present in R. sphaeroides. However, under semiaerobic growth conditions, a larger portion of the electron flow out of the cyt bc1 complex appears to be mediated via the cyt c2-to-cbb3-Cox and cyt cy-to-cbb3-Cox subbranches. The presence of multiple electron carriers and cyt c oxidases with different properties that can operate concurrently reveals that the respiratory electron transport pathways of R. sphaeroides are more complex than those of R. capsulatus.  相似文献   

7.
The ubiquinol-cytochrome c2 oxidoreductase (cytochrome bc1 complex) purified from chromatophores of Rhodobacter sphaeroides consists of four polypeptide subunits corresponding to cytochrome b, c1, and the Rieske iron-sulfur protein, as well as a 14-kDa polypeptide of unknown function, respectively. In contrast, the complex isolated from Rhodospirillum rubrum by the same procedure lacked a polypeptide corresponding to the 14-kDa subunit. Gel-permeation chromatography of the R. sphaeroides cytochrome bc1 complex in the presence of 200 mM NaCl removed the iron-sulfur protein, while the 14-kDa polypeptide remained tightly bound to the cytochromes; this is consistent with the possibility that the latter protein is an authentic component of the complex rather than an artifact of the isolation procedure. The individual polypeptides of the R. sphaeroides complex were purified to homogeneity by gel-permeation chromatography in the presence of 50% aqueous formic acid and their amino acid compositions determined. The 14-kDa polypeptide was found to be rich in charged and polar residues. Edman degradation analysis indicated that its N terminus is blocked and not rendered accessible by de-blocking procedures. Cyanogen bromide cleavage gave rise to a blocked N-terminal fragment as well as a C-terminal peptide comprising more than one-third of the protein. Gas-phase sequence analysis of this peptide established a sequence of 48 residues and identified a putative trans-membrane segment near the C terminus. The blocked N-terminal fragment was cleaved at tryptophan with BNPS-skatole. The resulting peptides, together with tryptic fragments derived from the intact protein, yielded additional sequence information; however, none of the sequences exhibited significant homologies to any known proteins. Tryptic fragments were also used to generate sequence information for cytochrome c1.  相似文献   

8.
The kinetics of the cytochrome (cyt) components of the bc(1) complex (ubiquinol: cytochrome c oxidoreductase, Complex III) are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. However, this difference-wavelength (DW) approach is of limited accuracy in the separation of absorbance changes of components with overlapping spectral bands. To resolve the kinetics of individual components in Rhodobacter sphaeroides chromatophores, we have tested a simplified version of a least squares (LS) analysis, based on measurement at a minimal number of different wavelengths. The success of the simplified LS analysis depended significantly on the wavelengths used in the set. The "traditional" set of 6 wavelengths (542, 551, 561, 566, 569 and 575 nm), normally used in the DW approach to characterize kinetics of cyt c(tot) (cyt c(1)+cyt c(2)), cyt b(L), cyt b(H), and P870 in chromatophores, could also be used to determine these components via the simplified LS analysis, with improved resolution of the individual components. However, this set is not sufficient when information about cyts c(1) and c(2) is needed. We identified multiple alternative sets of 5 and 6 wavelengths that could be used to determine the kinetics of all 5 components (P870 and cyts c(1), c(2), b(L), and b(H)) simultaneously, with an accuracy comparable to that of the LS analysis based on a full set of wavelengths (1 nm intervals). We conclude that a simplified version of LS deconvolution based on a small number of carefully selected wavelengths provides a robust and significant improvement over the traditional DW approach, since it accounts for spectral interference of the different components, and uses fewer measurements when information about all five individual components is needed. Using the simplified and complete LS analyses, we measured the simultaneous kinetics of all cytochrome components of bc(1) complex in the absence and presence of specific inhibitors and found that they correspond well to those expected from the modified Q-cycle. This is the first study in which the kinetics of all cytochrome and reaction center components of the bc(1) complex functioning in situ have been measured simultaneously, with full deconvolution over an extended time range.  相似文献   

9.
In the widely studied purple bacterium Rhodobacter sphaeroides, a small transmembrane protein, named PufX, is required for photosynthetic growth and is involved in the supramolecular dimeric organization of the core complex. We performed a structural and functional analysis of the photosynthetic apparatus of Rhodobacter veldkampii, a related species which evolved independently. Time-resolved optical spectroscopy of R. veldkampii chromatophores showed that the reaction center shares with R. sphaeroides spectral and redox properties and interacts with a cytochrome bc(1) complex through a Q-cycle mechanism. Kinetic analysis of flash-induced cytochrome b(561) reduction indicated a fast delivery of the reduced quinol produced by the reaction center to the cytochrome bc(1) complex. A core complex, along with two light-harvesting LH2 complexes significantly different in size, was purified and analyzed by sedimentation, size exclusion chromatography, mass spectroscopy, and electron microscopy. A PufX subunit identified by MALDI-TOF was found to be associated with the core complex. However, as shown by sedimentation and single-particle analysis by electron microscopy, the core complex is monomeric, suggesting that in R. veldkampii, PufX is involved in the photosynthetic growth but is unable to induce the dimerization of the core complex.  相似文献   

10.
The membrane integral ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductase (or the cyt bc1 complex) and its physiological electron acceptor, the membrane-anchored cytochrome cy (cyt cy), are discrete components of photosynthetic and respiratory electron transport chains of purple non-sulfur, facultative phototrophic bacteria of Rhodobacter species. In Rhodobacter capsulatus, it has been observed previously that, depending on the growth condition, absence of the cyt bc1 complex is often correlated with a similar lack of cyt cy (Jenney, F. E., et al. (1994) Biochemistry 33, 2496-2502), as if these two membrane integral components form a non-transient larger structure. To probe whether such a structural super complex can exist in photosynthetic or respiratory membranes, we attempted to genetically fuse cyt cy to the cyt bc1 complex. Here, we report successful production, and initial characterization, of a functional cyt bc1-cy fusion complex that supports photosynthetic growth of an appropriate R. capsulatus mutant strain. The three-subunit cyt bc1-cy fusion complex has an unprecedented bis-heme cyt c1-cy subunit instead of the native mono-heme cyt c1, is efficiently matured and assembled, and can sustain cyclic electron transfer in situ. The remarkable ability of R. capsulatus cells to produce a cyt bc1-cy fusion complex supports the notion that structural super complexes between photosynthetic or respiratory components occur to ensure efficient cellular energy production.  相似文献   

11.
A method has been developed for purification of highly active ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes from wild-type Rhodobacter sphaeroides, Rhodobacter capsulatus MT1131, bovine heart and yeast mitochondria. This is the first report of the isolation of cytochrome bc1 complex from a wild-type strain of Rb. sphaeroides and from any strain of Rb. capsulatus. The purification involves extraction of membranes with dodecyl maltoside and two successive DEAE column chromatography steps. All of the resulting bc1 complexes are free of succinate dehydrogenase and cytochrome c oxidase activities. The purified bc1 complexes from both photosynthetic bacteria contain four polypeptide subunits, although the molecular weights of some of their subunits differ. They are also free of reaction center and light-harvesting pigments and polypeptides. The turnover number of the Rb. sphaeroides complex is 128 s-1, and that of the Rb. capsulatus complex is 64 s-1. The bc1 complex from bovine heart contains eight polypeptides and has a turnover number of 1152 s-1, while the yeast complex contains nine polypeptides and has a turnover number of 219 s-1. The activities of these complexes are equal to or better than those commonly obtained by previously reported methods. This method of purification is relatively simple, reproducible, and yields cytochrome bc1 complexes which largely retain the turnover number of the starting material and are pure on the basis of optical spectra, enzymatic activities and polypeptide composition. The purification of cytochrome bc1 complexes from energy-transducing membranes which differ markedly in their lipid and protein composition makes it likely that with minor modifications this method could be applied to species other than those described here.  相似文献   

12.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex.  相似文献   

13.
Cytochrome bc(1) complex catalyzes the reaction of electron transfer from ubiquinol to cytochrome c (or cytochrome c(2)) and couples this reaction to proton translocation across the membrane. Crystallization of the Rhodobacter sphaeroides bc(1) complex resulted in crystals containing only three core subunits. To mitigate the problem of subunit IV being dissociated from the three-subunit core complex during crystallization, we recently engineered an R. sphaeroides mutant in which the N-terminus of subunit IV was fused to the C-terminus of cytochrome c(1) with a 14-glycine linker between the two fusing subunits, and a 6-histidine tag at the C-terminus of subunit IV (c(1)-14Gly-IV-6His). The purified fusion mutant complex shows higher electron transfer activity, more structural stability, and less superoxide generation as compared to the wild-type enzyme. Preliminary crystallization attempts with this mutant complex yielded crystals containing four subunits and diffracting X-rays to 5.5? resolution.  相似文献   

14.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   

15.
In Rhodobacter sphaeroides chromatophores, cytochromes (cyt) c(1) and c(2) have closely overlapping spectra, and their spectral deconvolution provides a challenging task. As a result, analyses of the kinetics of different cytochrome components of the bc(1) complex in purple bacteria usually report only the sum cyt c(1) + cyt c(2) kinetics. Here we used newly determined difference spectra of individual components to resolve the kinetics of cyt c(1) and c(2) in situ via a least-squares (LS) deconvolution. We found that the kinetics of cyt c(1) and c(2) are significantly different from those measured using the traditional difference wavelength (DW) approach, based on the difference in the absorbance at two different wavelengths specific for each component. In particular, with the wavelength pairs previously recommended, differences in instrumental calibration led to kinetics of flash-induced cyt c(1) oxidation measured with the DW method which were faster than those determined by the LS method (half-time of approximately 120 micros vs half-time of approximately 235 micros, in the presence of antimycin). In addition, the LS approach revealed a delay of approximately 50 micros in the kinetics of cyt c(1) oxidation, which was masked when the DW approach was used. We attribute this delay to all processes leading to the oxidation of cyt c(1) after light activation of the photosynthetic reaction center, especially the dissociation of cyt c(2) from the reaction center. We also found that kinetics of both cyt c(1) and c(2) measured by the DW approach were significantly distorted at times longer than 1 ms, due to spectral contamination from changes in the b hemes. The successful spectral deconvolution of cyt c(1) and c(2), and inclusion of both cytochromes in the kinetic analysis, significantly increase the data available for mechanistic understanding of bc(1) turnover in situ.  相似文献   

16.
Electron transfer from the Rieske iron-sulfur protein to cytochrome c(1) (cyt c(1)) in the Rhodobacter sphaeroides cytochrome bc(1) complex was studied using a ruthenium dimer complex, Ru(2)D. Laser flash photolysis of a solution containing reduced cyt bc(1), Ru(2)D, and a sacrificial electron acceptor results in oxidation of cyt c(1) within 1 micros, followed by electron transfer from the iron-sulfur center (2Fe-2S) to cyt c(1) with a rate constant of 80,000 s(-1). Experiments were carried out to evaluate whether the reaction was rate-limited by true electron transfer, proton gating, or conformational gating. The temperature dependence of the reaction yielded an enthalpy of activation of +17.6 kJ/mol, which is consistent with either rate-limiting conformational gating or electron transfer. The rate constant was nearly independent of pH over the range pH 7 to 9.5 where the redox potential of 2Fe-2S decreases significantly due to deprotonation of His-161. The rate constant was also not greatly affected by the Rieske iron-sulfur protein mutations Y156W, S154A, or S154A/Y156F, which decrease the redox potential of 2Fe-2S by 62, 109, and 159 mV, respectively. It is concluded that the electron transfer reaction from 2Fe-2S to cyt c(1) is controlled by conformational gating.  相似文献   

17.
E Darrouzet  S Mandaci  J Li  H Qin  D B Knaff  F Daldal 《Biochemistry》1999,38(25):7908-7917
The cytochrome (cyt) c1 heme of the ubihydroquinone:cytochrome c oxidoreductase (bc1 complex) is covalently attached to two cysteine residues of the cyt c1 polypeptide chain via two thioether bonds, and the fifth and sixth axial ligands of its iron atom are histidine (H) and methionine (M), respectively. The latter residue is M183 in Rhodobacter capsulatus cyt c1, and previous mutagenesis studies revealed its critical role for the physicochemical properties of cyt c1 [Gray, K. A., Davidson, E., and Daldal, F. (1992) Biochemistry 31, 11864-11873]. In the homologous chloroplast b6f complex, the sixth axial ligand is provided by the amino group of the amino terminal tyrosine residue. To further pursue our investigation on the role played by the sixth axial ligand in heme-protein interactions, novel cyt c1 variants with histidine-lysine (K) and histidine-histidine axial coordination were sought. Using a R. capsulatus genetic system, the cyt c1 mutants M183K and M183H were constructed by site-directed mutagenesis, and chromatophore membranes as well as purified bc1 complexes obtained from these mutants were characterized in detail. The studies revealed that these mutants incorporated the heme group into the mature cyt c1 polypeptides, but yielded nonfunctional bc1 complexes with unusual spectroscopic and thermodynamic properties, including shifted optical absorption maxima (lambdamax) and decreased redox midpoint potential values (Em7). The availability and future detailed studies of these stable cyt c1 mutants should contribute to our understanding of how different factors influence the physicochemical and folding properties of membrane-bound c-type cytochromes in general.  相似文献   

18.
The kinetics of reoxidation of the primary acceptor Q(a) has been followed by measuring the changes in the fluorescence yield induced by a series of saturating flashes in intact cells of Rhodobacter sphaeroides in anaerobic conditions. At 0 degrees C, about half of Q(a)(-) is reoxidized in about 200 ms while reoxidation of the remaining fraction is completed in several seconds to minutes. The fast phase is associated with the transfer of ubiquinone formed at site Q(o) of the cytochrome bc(1) complex while the slowest phase is associated with the diffusion of ubiquinone present in the membrane prior to the flash excitation. The biphasic kinetics of Q(a)(-) oxidation is interpreted assuming that the electron chain is organized in supercomplexes that associate two RCs and one cyt bc(1) complex, which allows a fast transfer of quinone formed at the level of cyt bc(1) complex to the RCs. In agreement with this model, the fast phase of Q(a)(-) reoxidation is inhibited by myxothiazol, a specific inhibitor of cyt bc(1). The PufX-deleted mutant displays only the slowest phase of Q(a)(-) oxidation; it is interpreted by the lack of supramolecular organization of the photosynthetic chain that leads to a larger average distance between cyt bc(1) and RCs.  相似文献   

19.
The destruction of the Rieske iron-sulfur cluster ([2Fe-2S]) in the bc(1) complex by hematoporphyrin-promoted photoinactivation resulted in the complex becoming proton-permeable. To study further the role of this [2Fe-2S] cluster in proton translocation of the bc(1) complex, Rhodobacter sphaeroides mutants expressing His-tagged cytochrome bc(1) complexes with mutations at the histidine ligands of the [2Fe-2S] cluster were generated and characterized. These mutants lacked the [2Fe-2S] cluster and possessed no bc(1) activity. When the mutant complex was co-inlaid in phospholipid vesicles with intact bovine mitochondrial bc(1) complex or cytochrome c oxidase, the proton ejection, normally observed in intact reductase or oxidase vesicles during the oxidation of their corresponding substrates, disappeared. This indicated the creation of a proton-leaking channel in the mutant complex, whose [2Fe-2S] cluster was lacking. Insertion of the bc(1) complex lacking the head domain of the Rieske iron-sulfur protein, removed by thermolysin digestion, into PL vesicles together with mitochondrial bc(1) complex also rendered the vesicles proton-permeable. Addition of the excess purified head domain of the Rieske iron-sulfur protein partially restored the proton-pumping activity. These results indicated that elimination of the [2Fe-2S] cluster in mutant bc(1) complexes opened up an otherwise closed proton channel within the bc(1) complex. It was speculated that in the normal catalytic cycle of the bc(1) complex, the [2Fe-2S] cluster may function as a proton-exiting gate.  相似文献   

20.
The circular dichroism (CD) of dihaem cytochrome b from mitochondrial and bacterial ubiquinol:cytochrome-c reductase (bc1 complex) has been characterized. The dichroic properties of the yeast purified cyt b are very similar to those of the native cyt b within the mitochondrial bc1 complex. The CD spectra in the Soret region of the native cytochrome b present in all species studied show an intense bisignate Cotton effect having a zero-crossing wavelength close to the absorbance maximum. In preparations partially or completely depleted of the low-potential b haem (b1) the CD spectra exhibit a single positive Cotton effect resembling the corresponding absorption spectrum. This is particularly evident in the purified cytochrome b-562 from Rhodobacter sphaeroides R26, which contains only the high-potential b haem (bh). These spectral features together with the reconstitution of the cytochrome b1 haem have been used to resolve the CD contribution of each haem to the CD spectra of cytochrome b. The mechanisms which might be responsible for the optical activity have been examined. It appears that the CD spectra of cytochrome b derive from both the mutual interaction of its two haems (giving rise to exciton coupling) and to the interaction of each haem with nearby aromatic residues, other than the pairs of histidines which coordinate the iron. The dipole coupling between haem and aromatic residues appears to be more important than exciton coupling in the CD spectra of oxidized b cytochromes and correlations have been made between the CD features and the proposed structure of cytochrome b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号