共查询到20条相似文献,搜索用时 15 毫秒
1.
Rintoul DA 《Transactions of the Kansas Academy of Science. Kansas Academy of Science》1992,95(1-2):16-22
Transduction of a signal from an extracellular peptide hormone to produce an intracellular response is often mediated by a cell surface receptor, which is usually a glycoprotein. The secondary intracellular signal(s) generated after hormone binding to the receptor have been intensively studied. The nature of the primary signal generated by ligand binding to the receptor is understood less well in most cases. The particular case of the epidermal growth factor (EGF) receptor is analyzed, and evidence for or against two dissimilar models of primary signal transduction is reviewed. Evidence for the most widely accepted current model is found to be unconvincing. Evidence for the other model is substantial but indirect; a direct test of this model remains to be done. 相似文献
2.
Diacylglycerol (DAG) and phosphatidic acid (PA) are lipids with unique functions as metabolic intermediates, basic membrane constituents, and second-signal components. Diacylglycerol kinases (DGK) regulate the levels of these two lipids, catalyzing the interconversion of one to the other. The DGK family of enzymes is composed of 10 isoforms, grouped into five subfamilies based on the presence of distinct regulatory domains. From its initial characterization as a type IV DGK to the generation of mouse models showing its importance in cardiac dysfunction and immune pathologies, diacylglycerol kinase ζ (DGKζ) has proved an excellent example of the critical role of lipid-metabolizing enzymes in the control of cell responses. Although the mechanism that regulates this enzyme is not well known, many studies demonstrate its subtle regulation and its strategic function in specific signaling and as part of adaptor protein complexes. These data suggest that DGKζ offers new opportunities for therapeutic manipulation of lipid metabolism. 相似文献
3.
《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2020,1865(3):158608
Brain-specific diacylglycerol kinase (DGK) δ-knockout mice exhibited serotonin transporter (SERT) inhibitor-sensitive obsessive-compulsive disorder-like behaviors. Moreover, SERT protein levels were markedly increased in the DGKδ-deficient brain. However, its molecular mechanisms remain unclear. We found that the catalytic subdomain-a and the coiled-coil structure-containing region of DGKδ interacted with the C-terminal cytoplasmic region (CTC) of SERT. Moreover, the protein levels of full-length SERT and SERT-CTC alone were significantly decreased by DGKδ in a catalytic activity-dependent manner. A proteasome inhibitor, MG-132, inhibited DGKδ-dependent SERT degradation. Notably, DGKδ interacted with MAGE-D1 adaptor protein and Praja-1 E3 ubiquitin-protein ligase, and enhanced the ubiquitination of SERT through Praja-1. Taken together, these results indicate that DGKδ interacts with SERT and induces SERT degradation in an activity-dependent manner through the Praja-1 ubiquitin ligase-proteasome system. These new findings provide novel insights into serotonergic system regulation and the pathophysiology/therapeutics of serotonin-/SERT-related diseases such as obsessive-compulsive disorder, depression, autism and schizophrenia. 相似文献
4.
Recently, we described a novel function of over-expressed protein kinase Cε (PKCε) as a negative allosteric modulator of EGFR signalling in several head and neck squamous carcinoma (HNSCC) cell lines. Extending this work, here we present several lines of evidence for the potency of PKCε to differently modulate the efficacy of EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and lapatinib. Using the HNSCC cell line FaDu as a model, we demonstrate by co-immunoprecipitation the physical association of over-expressed PKCε with the EGFR which is stabilised by gefitinib and leads to an increase in gefitinib-induced inhibition of EGFR downstream signalling and elevated EGFR-ErbB2 heterodimerisation. Cell cycle and Western blot analysis revealed that the gefitinib-induced apoptosis was enhanced whereas the pro-apoptotic effect of lapatinib that requires another EGFR conformation was reduced by PKCε. Our findings suggest that due to elevated expression PKCε may associate with the EGFR resulting in conformational changes and different allosteric modulation of the EGFR behaviour towards TKIs. This surprising capacity indicates PKCε as a novel predictive marker protein in molecular cancer therapy with EGFR tyrosine kinase inhibitors. 相似文献
5.
Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in Western societies, affecting one in four adults in the USA, and is strongly associated with hepatic insulin resistance, a major risk factor in the pathogenesis of type 2 diabetes. Although the cellular mechanisms underlying this relationship are unknown, hepatic accumulation of diacylglycerol (DAG) in both animals and humans has been linked to hepatic insulin resistance. In this Perspective, we discuss the role of DAG activation of protein kinase Cε as the mechanism responsible for NAFLD-associated hepatic insulin resistance seen in obesity, type 2 diabetes, and lipodystrophy. 相似文献
6.
Protein kinase C (PKC) is a family of serine/threonine protein kinases, and alterations have been found in PKC isoform expression and localization in the failing heart. These alterations in PKC activation levels influence the PKC-mediated phosphorylation status of cellular target proteins involved in Ca2+-handling and sarcomeric contraction. The differences observed in the effects due to PKC-mediated phosphorylation may underlie part of the contractile dysfunction observed in the failing heart. It is therefore important to establish the beneficial and detrimental effects of this kinase in the healthy and failing heart. The function of PKC has been studied intensively; however, the complexity of the regulation of this kinase makes the interpretation of the different effects difficult. The main focus of this review is the (patho)physiological impact of phosphorylation of sarcomeric proteins, myosin light chain-2, troponin I and T, desmin, myosin binding protein-C, and titin by PKC. 相似文献
7.
8.
Sequence comparison of the -subunit of phosphorylase kinase with -tropomyosin revealed 32% identity, and 49% similarity, between the region of -tropomyosin coded by exon 5 and a 39 amino acid segment of the kinase subunit. A subsequence of the -subunit segment and a sequence overlapping the same -subunit region are homologous with: (a) a region of the cytoplasmic domain of EGF receptor (50% identity) and (b) a Ca2+-binding domain of the chain of S-100 protei (50% identity) respectively. Statistical analysis shows that these homologies are significant. The biological implication of the above similarities is discussed. 相似文献
9.
Caldwell GB Howe AK Nickl CK Dostmann WR Ballif BA Deming PB 《Journal of cellular biochemistry》2012,113(1):39-48
The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The K(m) for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF, and Fibroblast growth factor 2 (FGF2) and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechanism for regulating PKA activity. 相似文献
10.
Gharbi SI Rincón E Avila-Flores A Torres-Ayuso P Almena M Cobos MA Albar JP Mérida I 《Molecular biology of the cell》2011,22(22):4406-4414
Diacylglycerol (DAG) generation at the T cell immunological synapse (IS) determines the correct activation of antigen-specific immune responses. DAG kinases (DGKs) α and ζ act as negative regulators of DAG-mediated signals by catalyzing DAG conversion to phosphatidic acid (PA). Nonetheless, the specific input of each enzyme and their spatial regulation during IS formation remain uncharacterized. Here we report recruitment of endogenous DGKα and DGKζ to the T cell receptor (TCR) complex following TCR/CD28 engagement. Specific DGK gene silencing shows that PA production at the activated complex depends mainly on DGKζ, indicating functional differences between these proteins. DGKζ kinase activity at the TCR is enhanced by phorbol-12-myristate-13-acetate cotreatment, suggesting DAG-mediated regulation of DGKζ responsiveness. We used GFP-DGKζ and -DGKα chimeras to assess translocation dynamics during IS formation. Only GFP-DGKζ translocated rapidly to the plasma membrane at early stages of IS formation, independent of enzyme activity. Finally, use of a fluorescent DAG sensor confirmed rapid, sustained DAG accumulation at the IS and allowed us to directly correlate membrane translocation of active DGKζ with DAG consumption at the IS. This study highlights a DGKζ-specific function for local DAG metabolism at the IS and offers new clues to its mode of regulation. 相似文献
11.
12.
The alpha subunit of the purified voltage-sensitive sodium channel from rat brain is rapidly phosphorylated to the extent of 3-4 mol phosphate/mol by purified protein kinase C. The alpha subunit of the native sodium channel in synaptosomal membranes is also phosphorylated by added protein kinase C as assessed by specific immunoprecipitation and polyacrylamide gel electrophoresis of labeled membranes. Our results suggest coordinate regulation of sodium channel phosphorylation state by cAMP-dependent and calcium/phospholipid-dependent protein kinases. 相似文献
13.
We recently reported that diacylglycerol kinase (DGK) α enhanced tumor necrosis factor-α (TNF-α)-induced activation of nuclear factor-κB (NF-κB). However, the signaling pathway between DGKα and NF-κB remains unclear. Here, we found that small interfering RNA-mediated knockdown of DGKα strongly attenuated protein kinase C (PKC) ζ-dependent phosphorylation of a large subunit of NF-κB, p65/RelA, at Ser311 but not PKCζ-independent phosphorylation at Ser468 or Ser536. Moreover, knockdown and overexpression of PKCζ suppressed and synergistically enhanced DGKα-mediated NF-κB activation, respectively. These results strongly suggest that DGKα positively regulates TNF-α-dependent NF-κB activation via the PKCζ-mediated Ser311 phosphorylation of p65/RelA. 相似文献
14.
The activation of developmental signaling pathways such as Notch, Hedgehog and Wnt has implications in the onset and progression of numerous types of cancer. Consequently, targeting of such pathways is considered an attractive therapeutic approach. Inhibition of the Wnt signaling cascade proves to be complicated, in part, due to the lack of druggable pathway components. The central hub in Wnt signaling is the protein β-catenin, which is involved in numerous protein–protein interactions. In general, the inhibition of protein–protein interactions is challenging in particular with binding interfaces lacking pronounced hydrophobic pockets. Herein, we give an overview of β-catenin–protein interactions, and we review active agents that were reported to inhibit canonical Wnt signaling via direct targeting of β-catenin. 相似文献
15.
Transforming growth factor beta (TGFβ) signaling is linked to the membrane trafficking of TGFβ receptors. The Protein Kinase C (PKC) family of serine/threonine kinases have been implicated in modulating the endocytic processes of various receptors. The present study investigated whether PKC activity plays a role in the trafficking, and signaling of TGFβ receptors, and further explored which PKC isoforms may be responsible for altered TGFβ signaling patterns. Using immunofluorescence microscopy and 125I-TGFβ internalization assays, we show that the pharmacological inhibition of PKC activity alters TGFβ receptor trafficking and delays TGFβ receptor degradation. Consistent with these findings, we demonstrate that PKC inhibition extends TGFβ-dependent Smad2 phosphorylation. Previous studies have shown that PKCζ associates with TGFβ receptors to modulate cell plasticity. We therefore used siRNA directed at the atypical PKC isoforms to investigate if reducing PKCι and PKCζ protein levels would delay TGFβ receptor degradation and extend TGFβ signaling. Our findings suggest that atypical PKC isoforms regulate TGFβ signaling by altering cell surface TGFβ receptor trafficking and degradation. 相似文献
16.
Diacylglycerol kinase: a key modulator of signal transduction? 总被引:15,自引:0,他引:15
Diacylglycerol kinase (DGK) plays a central role in the metabolism of diacylglycerol released as a second messenger in agonist-stimulated cells. The major purified form of the enzyme (80 kDa DGK) is highly abundant in lymphocyte cytosol and may become membrane-associated via phosphorylation by protein kinase C. In addition, there are several kinase subspecies immunologically distinct from the 80 kDa enzyme, which differ markedly in their responses to several compounds such as sphingosine and R59022. Thus, further work on each enzyme species is needed to define the function of DGK in stimulated cells. 相似文献
17.
18.
Thorp E Vaisar T Subramanian M Mautner L Blobel C Tabas I 《The Journal of biological chemistry》2011,286(38):33335-33344
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo. 相似文献
19.
20.
The cGMP/cGMP-dependent protein kinase (cGK) signaling pathway is implicated in the functional regulation of intracellular calcium levels. In the present study, we investigated the regulation of transient receptor potential canonical 7 (TRPC7) by the cGMP/cGK-I pathway. TRPC7 contains three putative cGK phosphorylation sites (Arg-Arg/Lys-Xaa-Ser/Thr). However, the role of cGK-I in the regulation of TRPC7 activity remains unclear. In vitro and in vivo kinase assays have revealed that cGK-Iα phosphorylates mouse TRPC7 but not mouse TRPC3. Site-directed mutagenesis analysis revealed that TRPC7 was phosphorylated by cGK-Iα at threonine 15. Phosphorylation of TRPC7 significantly suppressed carbachol-induced calcium influx and CREB phosphorylation. Furthermore, co-immunoprecipitation assay demonstrated that cGK-Iα interacted with the ankyrin repeat domain in the N terminus of TRPC7. cGK-Iβ also bound to TRPC7, while the type II regulatory subunit of cAMP-dependent protein kinase did not bind. These data indicate that cGK-Iα interacts with and phosphorylates TRPC7, contributing to the quick and accurate regulation of calcium influx and CREB phosphorylation. 相似文献