首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Band 3 proteins, members of the anion exchange family of proteins (AE 0-3), are involved in a number of physiological activities such as cell volume and osmotic homeostasis, HCO3-/Cl- exchange, red cell aging, IgG binding and cellular removal, and the maintenance of the structural integrity of cells. They are present in the membranes of all cells and cellular organelles examined including Golgi, mitochondria and nuclei. The first polymorphisms of band 3 discovered were the asymptomatic band 3 Memphis variants carrying the Lys --> Gly substitution at position 56 in the cytoplasmic tail, and band 3 Texas (high transport band 3 Texas) with a mutation in the critical transmembrane, anion transport domain (Pro --> Leu substitution at position 868). The rate at which band 3 mutations were discovered accelerated in the mid 1990s and there are now over 50 known. The most common polymorphisms of band 3 are the Diego blood group antigens which reside on extracellular loops of the protein. Southeast Asia ovalocytosis (SAO; a nine amino acid deletion of residues 400-408) is a band 3 mutation known only in the heterozygous state in which it does not cause disease. It is thought to confer resistance to malaria by altering red cell deformability. Band 3 mutations are responsible for a subset of the heterogeneous group of disorders known as hereditary spherocytosis (HS). HS is a relatively common congenital or inherited group of anemias characterized by chronic hemolysis and abnormal red cell morphology. Red cells in the subset of HS with band 3 mutations behave like they are band 3 deficient either because the mutant protein is not incorporated into the membrane or because it is not functional. HS can be caused by mutations in any of at least 5 proteins involved in membrane stability. Band 3 mutations are associated with diseases in cells besides erythrocytes. For example, 2 types of distal renal tubular acidosis are the result of band 3 mutations either alone or combined with SAO. Band 3 alterations are implicated in neurological diseases such as familial paroxysmal dyskinesia, idiopathic generalized epilepsies, and neuro- or choreoacanthocytosis although they have not been demonstrated to be causative. Mutations in other genes can cause changes in band 3. An example is sickle cell anemia where the increased oxidation causes accelerated aging of band 3 and increased IgG binding and cellular removal.  相似文献   

3.
Tissue transglutaminase (TGC, TG2, 80 kDa) is inactive in cross-linking reactions and is converted in vitro and in vivo to the TG (55 kDa) active isoform (Fraij in J Cell Biochem 112:2469–2489, 2011). Two isoforms of human TGC were cloned from human erythroleukemia (HEL) cells induced with retinoic acid (RA) and termed TGH, 63 kDa (Fraij et al. in J Biol Chem 267:22616–22673, 1992) and TGH2, 37 kDa. The purified TGC isoforms exhibited GTPase activity and TGH and TGH2 showed higher activities than the native TGC protein. In all normal cells examined, TGC was found in membrane fractions several fold higher than the supernatant fractions; however, in the natural tumor cell line HEL the TGC cellular distribution was reversed. Although TGC is the major enzyme in normal human erythrocytes, its expression level was significantly decreased in HEL cells. RA treatment induced a sevenfold increase in the level of TGC protein in HEL cells and was accompanied by its translocation to cell membranes. When isolated membrane and supernatant fractions from normal human foreskin (CF3), normal human embryonic lung (WI-38), and HEL cells treated with or without RA were incubated with [32P]-ATP at 37 °C for 1 h, more radio-labeled proteins were detected in the membrane fractions than the cytosolic fractions. More labeled protein bands were detected in RA treated HEL cells in comparison to control HEL cell extracts. Radio labeled proteins coimmunoprecipitated with the TGC isoforms in RA treated HEL membrane fractions thereby confirming that the radio-labeled material consists of endogenous proteins associated with TGC isoforms. Protein phosphorylation is related to the induction and translocation of the isoforms in RA treated cells. These results show that the TGC isoforms complexes with proteins in vivo and that the phosphorylation of these proteins is catalyzed directly by TGC kinase activity or indirectly by the TGC phosphorylation of other protein kinases.  相似文献   

4.
The present work is aimed to study the mechanism of faster erythrocyte clearance in hereditary spherocytosis (HS), a heterogeneous disorders characterized by alterations in the proteins of the red cell membrane skeleton along with different kinds of thalassemia. The maximum exposure of phosphatidylserine (PS) is found in HS compared to those in both α- and β-thalassemia. Interestingly, in HS more PS exposed cells were found in younger erythrocytes compared to normal and the thalassemics where aged cells showed higher loss of PS asymmetry. Loss of sialic acid and GlcNAc bearing glycoconjugates, presumably the glycophorins, was also found upon aging. The loss of PS asymmetry together with the cell surface glycoproteins mediated by membrane vesiculation, seemed to play key role in early clearance of erythrocytes from circulation following a mechanism similar to HbEβ-thalassemia.  相似文献   

5.
Triethyltin bromide activates the cyclic AMP-dependent protein kinases of human red cell membranes and of bovine brain. Additions of 25-500 microM triethyltin to red cell ghosts resulted in enhanced phosphorylation of ghost proteins. When added to partially purified cyclic AMP-dependent protein kinases from red cell ghosts or bovine brain, stimulation of the phosphorylation of calf thymus histone was observed. The enhancement of kinase activity was due to release of catalytic subunits from the intact protein kinase. Brief exposure of the partially purified enzymes to triethyltin, followed by DE52 chromatography, resulted in elution profiles for regulatory and catalytic subunits that were similar to the profile resulting after cyclic AMP activation. Triethyltin interacts with both regulatory and catalytic subunits. When it was added to the partially purified cyclic AMP-dependent protein kinases from human red cell ghosts or bovine brain, noncompetitive inhibition of cyclic AMP binding to the regulatory subunit of the enzyme was observed. It interacted with the catalytic subunit to produce slow inhibition of catalytic activity. The inhibition was non-competitive with respect to both histone and ATP. When intact red cells were subjected to brief exposure with triethyltin, enhanced phosphorylation of certain membrane proteins occurred, suggesting that the activation of the cyclic AMP protein kinases by triethyltin may be physiologically significant.  相似文献   

6.
In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine.  相似文献   

7.
Mitochondria are dynamic organelles that undergo frequent fission and fusion or branching. To analyze the mitochondrial fusion reaction, mitochondria were separately labeled with green or red fluorescent protein (GFP and RFP, respectively) in HeLa cells, and the cells were fused using hemagglutinating virus of Japan (HVJ). The resulting mixing of the fluorescent reporters was then followed using fluorescence microscopy. This system revealed that mitochondria fuse frequently in mammalian cells, and the fusion depends on the membrane potential across the inner membrane. The protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP), led to fragmentation of the mitochondria and inhibited the fusion reaction. Removal of CCCP recovered the fusion activity to reform filamentous mitochondrial networks. Analysis of the effects of GTP-binding proteins, DRP1 and two FZO1 isoforms, and the GTPase-domain mutants on the CCCP-induced mitochondrial morphologic changes revealed that DRP1 and FZO1 are involved in membrane budding and fusion, respectively. Furthermore, a HVJ-dependent cell fusion assay combined with RNA interference (RNAi) demonstrated that both FZO1 isoforms are essential and must be acting in cis for the mitochondrial fusion reaction to occur.  相似文献   

8.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

9.
Red (Trifolium pratense L., cv. “Start”) and white clover varieties (Trifolium repens L., cv. “Debut” and cv. “Haifa”) were waterlogged for 14 days and subsequently recovered for the period of 21 days. Physiological and biochemical responses of the clover varieties were distinctive, which suggested different sensitivity toward flooding. The comparative study of morphological and biochemical parameters such as stem length, leaflet area, dry weight, protein content, protein pattern and proteolytic degradation revealed prominent changes under waterlogging conditions. Protease activity in the stressed plants increased significantly, especially in red clover cv. “Start”, which exhibited eightfold higher azocaseinolytic activity compared to the control. Changes in the protein profiles were detected by SDS-PAGE electrophoresis. The specific response of some proteins (Rubisco, Rubisco-binding protein, Rubisco activase, ClpA and ClpP protease subunits) toward the applied stress was assessed by immunoblotting. The results characterized the red clover cultivar “Start” as the most sensitive toward waterlogging, expressing reduced levels of Rubisco large and small subunits, high content of ClpP protease subunits and increased activity of protease isoforms.  相似文献   

10.
Flywheel-based resistance exercise (RE) attenuates muscle atrophy during hindlimb suspension. We have previously shown that protein synthesis is elevated in response to RE, but the effect on protein degradation, cell proliferation, or apoptosis was not investigated. We hypothesized that, in addition to affecting protein synthesis, RE inhibits processes that actively contribute to muscle atrophy during hindlimb suspension. Male rats were housed in regular cages (control), tail suspended for 2 wk (HS), or HS with RE every other day for 2 wk (HSRE). Although RE attenuated soleus muscle atrophy during HS, the observed fivefold elevation in apoptosis and the 53% decrease in cell proliferation observed with HS were unaffected by RE. Expression of genes encoding components of the ubiquitin-proteasome pathway of protein degradation were elevated with HS, including ubiquitin, MAFbx, Murf-1, Nedd4, and XIAP, and proteasome subunits C2 and C9. Total ubiquitinated protein was increased with HS, but proteasome activity was not different from control. RE selectively altered the expression of different components of this pathway: MAFbx, Murf-1, and ubiquitin mRNA abundance were downregulated, whereas C2 and C9 subunits remained elevated. Similarly, Nedd4 and XIAP continued to be upregulated, potentially accounting for the observed augmentation in total ubiquitinated protein with RE. Thus a different constellation of proteins is likely ubiquitinated with RE due to altered ubiquitin ligase composition. In summary, the flywheel-based resistance exercise paradigm used in this study is associated with the inhibition of some mechanisms associated with muscle atrophy, such as the increase in MAFbx and Murf-1, but not with others, such as proteasome subunit remodeling, apoptosis, and decreased proliferation, potentially accounting for the inability to completely restore muscle mass. Identifying specific exercise parameters that affect these latter processes may be useful in designing effective exercise strategies in the elderly or during spaceflight.  相似文献   

11.
Since Rh: -29, 38 (- - -/- - -, rh) phenotype of the Rh blood groups (--- in text) revealed unusual red cells, such as stomatocytes and microspherocytes and the relatively shortened half life of 17 days, red cell membrane proteins from Rh + (D), Rh - (d) and --- were compared by using SDS-polyacrylamide gel electrophoresis (SDS-PAGE). No differences were observed among the patterns of the reduced and non-reduced membrane proteins from Rh+, Rh- and --- red cells. Two-dimensional gel electrophoresis of --- red cell membrane proteins also revealed a pattern similar to Rh+ and Rh- red cell membrane proteins. It is suggested that the lack of all Rh antigens causes no visible alteration of red cell membrane proteins detected by the method of Fairbanks G., Steck T.L. and Wallach D.F.H. (1971) Biochemistry, N.Y. 10, 2606-2617.  相似文献   

12.
We report the generation and analysis of mutant mice bearing a targeted disruption of the heparan sulfate (HS)-modifying enzyme GlcNAc N-deacetylase/N-sulfotransferase 3 (NDST3). NDST3(-/-) mice develop normally, are fertile, and show only subtle hematological and behavioral abnormalities in agreement with only moderate HS undersulfation. Compound mutant mice made deficient in NDST2;NDST3 activities also develop normally, showing that both isoforms are not essential for development. In contrast, NDST1(-/-);NDST3(-/-) compound mutant embryos display developmental defects caused by severe HS undersulfation, demonstrating NDST3 contribution to HS synthesis in the absence of NDST1. Moreover, analysis of HS composition in dissected NDST3 mutant adult brain revealed regional changes in HS sulfation, indicating restricted NDST3 activity on nascent HS in defined wild-type tissues. Taken together, we show that NDST3 function is not essential for development or adult homeostasis despite contributing to HS synthesis in a region-specific manner and that the loss of NDST3 function is compensated for by the other NDST isoforms to a varying degree.  相似文献   

13.
The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.  相似文献   

14.
Spectrin, an important component of the mammalian erythrocyte membrane skeleton, is a heterodimeric protein with alpha and beta subunits of 280 and 246 kDa, respectively. Spectrin-like proteins have also been demonstrated in a wide variety of nonerythroid cells. To examine the hypothesis that nonerythroid beta spectrins may be encoded by the "erythroid" beta spectrin gene, we have isolated cDNA clones from a human fetal skeletal muscle library by hybridization to a previously described red cell beta spectrin cDNA. Detailed comparison of muscle and erythroid beta spectrin cDNAs has revealed sequence identity over the majority of their lengths, confirming that they are the product of the same gene. However, there is a sharp divergence in sequence at their 3' ends. A consequence of this divergence is the replacement of the carboxyl terminus of erythroid beta spectrin with a different, longer carboxyl-terminal domain in skeletal muscle. We hypothesize that tissue-specific differential polyadenylation leads to the selective activation of a donor splice site within the beta spectrin coding sequence, splicing downstream nonerythroid exons into the mature muscle beta spectrin mRNA. We predict that replacement, in nonerythroid cells, of the beta spectrin carboxyl terminus, known to participate in spectrin self-association and phosphorylation, has significant functional consequences. These data may explain previously reported nonerythroid beta spectrin isoforms that resemble red cell beta spectrin by immunochemical analysis.  相似文献   

15.
One-day old American kestrel (Falco sparverius) nestlings were orally dosed daily with 5 microliters/g of corn oil (controls), 25, 125 or 625 mg/kg of metallic lead in corn oil for 10 days. Forty per cent of the nestlings receiving 625 mg/kg of lead died after 6 days and growth rates were significantly depressed in the two highest lead dosed groups. At 10 days hematocrit values were significantly lower in the two highest lead treated groups, and hemoglobin content and red blood cell delta-aminolevulinic acid dehydratase (ALAD) activity was depressed in all lead treated groups. Plasma creatine phosphokinase decreased in the two highest treatment groups. Brain, liver and kidney ALAD activities, brain RNA to protein ratio and liver protein concentration decreased after lead exposure whereas liver DNA, DNA to RNA ratio and DNA to protein ratio increased. Brain monoamine oxidase and ATPase were not significantly altered. Measurements of the ontogeny of hematological variants and enzymes in normal development, using additional untreated nestlings, revealed decreases in red blood cell ALAD, plasma aspartate amino transferase, lactate dehydrogenase, brain DNA and RNA and liver DNA, whereas hematocrit, hemoglobin, plasma alkaline phosphatase, brain monoamine oxidase, brain ALAD and liver ALAD increased during the first 10 days of posthatching development. Biochemical and hematological alterations were more severe than those reported in adult kestrels or precocial young birds exposed to lead. Alterations may be due in part to delayed development.  相似文献   

16.
Heat stress (HS)-induced cardioprotection is associated with increased paxillin localization to the membrane fraction of neonatal rat ventricular myocytes (NRVM). The purpose of this study was 1) to examine the subcellular signaling pathways activated by HS; 2) to determine whether myocardial stress organizes and activates an integrated survival pathway; and 3) to investigate potential downstream cytoprotective proteins activated by HS. After HS, NRVM were subjected to chemical inhibitors (CI) designed to simulate ischemia by inhibiting both glycolysis and mitochondrial respiration. Protein kinase B (AKT) expression (wild type) was increased selectively with an adenoviral vector. Cell signaling was analyzed with Western blot analysis, while oncosis/apoptosis was assayed by measuring Trypan blue exclusion and/or terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, respectively. HS increased phosphorylation of focal adhesion kinase (FAK) at tyrosine 397 but did not adversely affect the viability of NRVM before CI. HS increased association between FAK and phosphatidylinositol 3-kinase as well as causing a significant increase in AKT activity. Increased expression of wild-type AKT protected myocytes from both oncotic and apoptotic cell death. Increased expression of a FAK inhibitor, FRNK, reduced AKT phosphorylation in response to HS both at time 0 and after 10 min of CI compared with myocytes expressing empty virus. We conclude that myocardial stress activates cytoskeleton-based signaling pathways that are associated with protection from lethal cell injury.  相似文献   

17.
The adaptor protein complex-1 (AP-1) sorts and packages membrane proteins into clathrin-coated vesicles (CCVs) at the TGN and endosomes. Here we show that this process is highly regulated by phosphorylation of AP-1 subunits. Cell fractionation studies revealed that membrane-associated AP-1 differs from cytosolic AP-1 in the phosphorylation status of its beta1 and mu1 subunits. AP-1 recruitment onto the membrane is associated with protein phosphatase 2A (PP2A)-mediated dephosphorylation of its beta1 subunit, which enables clathrin assembly. This Golgi-associated isoform of PP2A exhibits specificity for phosphorylated beta1 compared with phosphorylated mu1. Once on the membrane, the mu1 subunit undergoes phosphorylation, which results in a conformation change, as revealed by increased sensitivity to trypsin. This conformational change is associated with increased binding to sorting signals on the cytoplasmic tails of cargo molecules. Dephosphorylation of mu1 (and mu2) by another PP2A-like phosphatase reversed the effect and resulted in adaptor release from CCVs. Immunodepletion and okadaic acid inhibition studies demonstrate that PP2A is the cytosolic cofactor for Hsc-70-mediated adaptor uncoating. A model is proposed where cyclical phosphorylation/dephosphorylation of the subunits of AP-1 regulate its function from membrane recruitment until its release into cytosol.  相似文献   

18.
Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号