首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been identified as an attractive target for atherosclerosis intervention. Given potential relevance of 5-cholesten-3β, 25-diol, 3-sulphate (CHOS) and PPARγ, an integrated docking method was used to study their interaction mechanisms, with the full considerations to distinct CHOS conformations and dynamic ensembles of PPARγ ligand-binding domain (PPARγ-LBD). The results revealed that this novel platform is satisfactory to the accurate determination of binding profiles, and the binding pattern of CHOS is rather similar as those of current PPARγ full/partial agonists. CHOS contributes to the stabilization of the AF2 and β-sheet surfaces of PPARγ-LBD and promotes the configuration adjustment of Ω loop, in order to inhibit the Cdk5-mediated PPARγ phosphorylation. Nonetheless, there are clear differences in term of occupation of full or partial agonist-like binding models. The energetic and geometric analyses further revealed that CHOS may be fond of partial agonist-like binding, and its sulfonic group and carbon skeleton are helpful for the binding process. We hope that the results will aid our understanding of recognitions involving CHOS with PPARγ-LBD and warrant the further aspects to pharmacological experiments.

Communicated by Ramaswamy H. Sarma  相似文献   

2.
Oxysterol sulfation plays an important role in regulation of lipid metabolism and inflammatory responses. In the present study, we report the discovery of a novel regulatory sulfated oxysterol in nuclei of primary rat hepatocytes after overexpression of the gene encoding mitochondrial cholesterol delivery protein (StarD1). Forty-eight hours after infection of the hepatocytes with recombinant StarD1 adenovirus, a water-soluble oxysterol product was isolated and purified by chemical extraction and reverse-phase HPLC. Tandem mass spectrometry analysis identified the oxysterol as 5-cholesten-3β, 25-diol, disulfate (25HCDS), and confirmed the structure by comparing with a chemically synthesized compound. Administration of 25HCDS to human THP-1-derived macrophages or HepG2 cells significantly inhibited cholesterol synthesis and markedly decreased lipid levels in vivo in NAFLD mouse models. RT-PCR showed that 25HCDS significantly decreased SREBP-1/2 activities by suppressing expression of their responding genes, including ACC, FAS, and HMG-CoA reductase. Analysis of lipid profiles in the liver tissues showed that administration of 25HCDS significantly decreased cholesterol, free fatty acids, and triglycerides by 30, 25, and 20%, respectively. The results suggest that 25HCDS inhibits lipid biosynthesis via blocking SREBP signaling. We conclude that 25HCDS is a potent regulator of lipid metabolism and propose its biosynthetic pathway.  相似文献   

3.
4.
Lung cancer is an significant cause of death worldwide, and non–small-cell lung cancer (NSCLC) is the most common type of lung cancer. MicroRNAs (miRNAs) have been identified to play key roles in NSCLC development. Recently, it has been reported that miR-605-5p is a cancer-related miRNA in several types of tumors. In this study, we study the role of miR-605-5p in NSCLC cells. We find that miR-605-5p is upregulated in NSCLC cells. Overexpression of miR-605-5p significantly promotes lung cancer invasion and migration in H460 and H1299 cells. Besides this, miR-605-5p also promotes lung cancer cell carcinoma proliferation and metastasis in vivo. However, downregulation of miR-605-5p inhibits cell invasion and migration by inhibiting lung cancer cell carcinoma proliferation and metastasis. In addition, the luciferase report assay identifies 3′-untranslated region tumor necrosis factor α-induced protein 3 (TNFAIP3) as a target of miR-605-5p. Silencing of TNFAIP3 promotes invasion and proliferation in lung cancer. In addition, the knockdown of TNFAIP3 restores the significant decrease in invasion and proliferation in miR-605-5p-inhibitor–transfected lung cancer cells. In conclusion, miR-605-5p promotes invasion and proliferation by targeting TNFAIP3 in NSCLC, and may provide possible biomarkers for NSCLC therapy.  相似文献   

5.
Androst-5-ene-3β,7β,17β-triol (βAET) is an anti-inflammatory metabolite of DHEA that is found naturally in humans, but in rodents only after exogenous DHEA administration. Unlike DHEA, C-7-oxidized DHEA metabolites cannot be metabolized into potent androgens or estrogens, and are not peroxisome proliferators in rodents. The objective of our current studies was to characterize the pharmacology of βAET to enable clinical trials in humans. The pharmacology of βAET was characterized by pharmacokinetics, drug metabolism, nuclear hormone receptor interactions, androgenicity, estrogenicity, and systemic toxicity studies. βAET's acute anti-inflammatory activity and immune modulating characteristics were measured in vitro in RAW264.7 cells and in vivo in murine models with parenteral administration. βAET was rapidly metabolized and cleared from circulation in mice and monkeys. βAET was weakly androgenic and estrogenic in immature rodents, but not bound by androgen, estrogen, progesterone, or glucocorticoid nuclear hormone receptors. βAET did not induce peroxisome proliferation, nor was it systemically toxic or trophic for sex hormone responsive tissues in mature rats and monkeys. βAET significantly attenuated acute inflammation both in vitro and in vivo, augmented immune responses in adult mice, and reversed immune senescence in aged mice. βAET may contribute to the anti-inflammatory activity in rodents attributed to DHEA. Unlike DHEA, βAET's anti-inflammatory activity cannot be ascribed to activation of PPARs, androgen, or estrogen nuclear hormone receptors. Exogenous βAET is unlikely to produce untoward toxicity or hormonal perturbations in humans.  相似文献   

6.
7.
Cardiomyocyte (CM) differentiation from proepicardial organ- (PEO) and embryonic epicardium (eEpi)-derived cells or EPDCs in a developing heart emerges as a wide interest in purview of cardiac repair and regenerative medicine. eEpi originates from the precursor PEO and EPDCs, which contribute to several cardiac cell types including smooth muscle cells, fibroblasts, endothelial cells, and CMs during cardiogenesis. Here in this report, we have analyzed several cardiac lineage-specific marker gene expressions between PEO and eEpi cells. We have found that PEO-derived cells show increased level of CM lineage-specific marker gene expression compared to eEpi cells. Moreover, Wnt signaling activation results in increased level of CM-specific marker gene expression in both PEO and eEpi cells in culture. Interestingly, Wnt signaling activation also increases the number of proliferating and sarcomeric myosin (Mf20)-positive cells in eEpi explant culture. Together, this data suggests that eEpi cells as a source for CM differentiation and Wnt signaling mediator, β-catenin, might play an important role in CM differentiation from eEpi cells in culture.  相似文献   

8.
A pivotal role of phosphoinositide 3-kinase-γ (PI3Kγ) in inflammatory cell activation and recruitment makes it an attractive target for immunomodulatory therapy. In present study we investigated the therapeutic efficiency of AS605240, a selective PI3Kγ inhibitor, on hepatitis and liver fibrosis in murine models induced by concanavalin A (ConA). Orally administration of AS605240 significantly improved survival, decreased the serum levels of alanine aminotransaminase (ALT), prevented inflammatory infiltration to liver in ConA-induced hepatitis. TNF-α and IFN-γ at protein levels in serum and mRNA levels in liver were markedly reduced. Downregulated phospho-Akt level of inflammatory cells infiltrating the liver by AS605240 treatment was detected by immunohistochemistry analysis in liver and further confirmed by Western blotting analysis in splenocytes. In ConA-induced chronic liver fibrosis model, accumulation of smooth-muscle actin (SMA)-expressing cells was partially inhibited by AS605240 treatment. These observations suggest that AS605240 might be of therapeutic value for the treatment of ConA-induced hepatic injury.  相似文献   

9.
Osteoarthritis (OA) is the most common cause of musculoskeletal pain and disability. The importance of chondrocytes in the pathogenesis of OA is unequivocal. 17β-estradiol (E2) has a potential protective effect against OA. However, the mechanism of E2 in OA chondrocytes remains unclear. In this study, we investigated the regulative effect of E2 on cell growth and the relationship between E2 and the PI3K/Akt pathway in rat OA model chondrocytes (pretreated with interleukin-1β). We found that E2 induced chondrocyte proliferation, and increased the expression level of Akt simultaneously, especially the expression level of P-Akt. Furthermore, the inhibition of P-Akt could block chondrocyte proliferation induced by E2. These results suggest that PI3K/Akt activation induced by E2 may be an important factor in the mechanism of E2 in cell proliferation in rat OA model chondrocytes, and help further understanding the role of E2 in OA progression.  相似文献   

10.
11.

Background

After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ.

Results

We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway.

Conclusions

This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.  相似文献   

12.
Balssa F  Fischer M  Bonnaire Y 《Steroids》2011,76(7):667-668
5α-Estrane-3β,17α-diol is the major metabolite of nandrolone in horse urine. The presence of 5α-estrane-3β,17α-diol in female and gelding urines is prohibited by Racing Rules and its natural presence in male urine led regulation authorities to establish a concentration threshold of 45 ng/mL. This paper describes a rapid, simple and stereoselective synthesis of 5α-estrane-3β,17α-diol, providing horseracing laboratories with an essential reference material for their antidoping performance.  相似文献   

13.
14.
In this study, we have investigated the effect of the nutritive phytochemicals, indole-3-carbinol (I3C) and its metabolite, 3, 3′- diindolylmethane (DIM) on oxidative stress developed in type 2 diabetes mellitus (T2DM). This work was carried out in the genetically modified mouse (C57BL/6J mice) that closely simulated the metabolic abnormalities of the human disease after the administration of high fat diet (HFD). Glucose, insulin, hemoglobin (Hb), glycated hemoglobin (HbA1c), thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH), conjugated dienes (CD), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C, vitamin E, and reduced glutathione (GSH) levels were monitored in all the groups. Treatments positively modulate the glucose, insulin, and Hb and HbA1c levels in HFD mice. TBARS, LOOH, and CD were decreased in treatment groups when compared to the HFD group. Treatments increase SOD, CAT, GPx levels (erythrocyte, liver, kidney, and heart) and vitamin C, vitamin E, and GSH levels (plasma, liver, kidney, and heart) in diabetic mice. From the study, it was clear that the antioxidant-scavenging action were accelerated in mice treated with DIM than the I3C treatment group which was comparable with the standard drug metformin.  相似文献   

15.
16.
5-Androstene-3β,7β,17β-triol (β-AET), an active metabolite of dehydroepiandrosterone (DHEA), reversed glucocorticoid (GC)-induced suppression of IL-6, IL-8 and osteoprotegerin production by human osteoblast-like MG-63 cells and promoted osteoblast differentiation of human mesenchymal stem cells (MSCs). In a murine thermal injury model that includes glucocorticoid-induced osteopenia, β-AET significantly (p<0.05) preserved bone mineral content, restored whole body bone mineral content and endochondral growth, suggesting reversal of GC-mediated decreases in chondrocyte proliferation, maturation and osteogenesis in the growth plate. In men and women, levels of β-AET decline with age, consistent with a role for β-AET relevant to diseases associated with aging. β-AET, related compounds or synthetic derivatives may be part of effective therapeutic strategies to accelerate tissue regeneration and prevent or treat diseases associated with aging such as osteoporosis.  相似文献   

17.
Awuah PK  Rhieu BH  Singh S  Misse A  Monga SP 《PloS one》2012,7(6):e39771
Hepatocellular Carcinoma (HCC) is the fifth most common cancer worldwide. β-Catenin, the central orchestrator of the canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5 μg/gm body weight) as a tumor inducer is commonly used model to study HCC in mice. Herein, nine fifteen-day male β-catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB treatment and were examined for hepatic tumorigenesis at eight months. Paradoxically, a significantly higher tumor burden was observed in KO (p<0.05). Tumors in KO were β-catenin and glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A significant increase in PDGFRα and its ligand PDGF-CC leading to increased phosphotyrosine-720-PDGFRα was observed in tumor-bearing KO mice (p<0.05). Simultaneously, these livers displayed increased cell death, stellate cell activation, hepatic fibrosis and cell proliferation. Further, PDGF-CC significantly induced hepatoma cell proliferation especially following β-catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT C57BL/6 mice did not select for β-catenin gene mutations during hepatocarcinogenesis. Thus, DEN/PB enhanced HCC in mice lacking β-catenin in the liver may be due to their ineptness at regulating cell survival, leading to enhanced fibrosis and regeneration through PDGFRα activation. β-Catenin downregulation also made hepatoma cells more sensitive to receptor tyrosine kinases and thus may be exploited for therapeutics.  相似文献   

18.
Both the 5α, 6α- and 5β, 6β-dichloromethylene adducts (2a and 2b) of 3β-acetoxy-5-androsten-17-one (1) are produced when the latter is exposed to dichlorocarbene generated from chloroform and base by Phase Transfer Catalysis using ultrasound as a means of agitation. The 1H NMR substituent effects of 5α, 6α- and 5β, 6β-dichloromethylene on the angular methyl groups (Zürcher values) are given. The 13C NMR spectra for both compounds are presented and discussed.  相似文献   

19.
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper, we report the effect of 25HC3S and its precursor 25-hydroxycholesterol (25HC) on PPARγ activity and on inflammatory responses. Addition of 25HC3S to human macrophages markedly increased nuclear PPARγ and cytosol IκB and decreased nuclear NF-κB protein levels. PPARγ response element reporter gene assays showed that 25HC3S significantly increased luciferase activities. PPARγ competitor assay showed that the K(i) for 25HC3S was ~1 μM, similar to those of other known natural ligands. NF-κB-dependent promoter reporter gene assays showed that 25HC3S suppressed TNFα-induced luciferase activities only when cotransfected with pcDNAI-PPARγ plasmid. In addition, 25HC3S decreased LPS-induced expression and release of IL-1β. In the PPARγ-specific siRNA transfected macrophages or in the presence of PPARγ-specific antagonist, 25HC3S failed to increase IκB and to suppress TNFα and IL-1β expression. In contrast to 25HC3S, its precursor 25HC, a known liver X receptor ligand, decreased nuclear PPARγ and cytosol IκB and increased nuclear NF-κB protein levels. We conclude that 25HC3S acts in macrophages as a PPARγ ligand and suppresses inflammatory responses via the PPARγ/IκB/NF-κB signaling pathway.  相似文献   

20.
Summary A histochemical technique for 3-hydroxysteroid-dehydrogenase was applied to chick embryonic gonads between the seventh and fourteenth day of incubation. Up to the sixth and seventh day, the undifferentiated gonads gave negative reactions. Eleven out of twenty-eight ovaries of eight days showed some reaction and all ovaries over that age a stronger reaction, which was localized in isolated groups of cells distributed between medullary lacunae. Testes were negative before the tenth day, showing after that time an atypical and possibly unspecific reaction consisting of a diffuse purple stain of testicular cords. Adrenal glands were positive at all ages. The interpretation of these facts is discussed in relation to the production of steroid hormones by the embryonic gonads and their possible role in sex differentiation.This work was supported by a grant from the Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina. Dr. Narbaitz holds a research position of the same Institution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号