首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

4.
The human endogenous retrovirus K (HERV-K)-encoded protein cORF has recently been shown to be a functional homolog of the HIV Rev protein. Rev-mediated RNA export requires interaction between a leucine-rich nuclear export signal (NES) in Rev and the nuclear export receptor Crm1/exportin1. Like Rev, cORF binds to Crm1 and cORF-mediated RNA export depends on Crm1 activity. Here we document that mutation of the putative NES in cORF results in trapping of the protein in the nucleus, suggesting that the cORF NES functions in analogy to the Rev NES.  相似文献   

5.
6.
A paradoxical mutant GATA factor   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

7.
8.
Heat shock cognate protein 70 (Hsc70) serves nuclear transport of several proteins as a molecular chaperone. We have recently identified a novel variant of human Hsc70, heat shock cognate protein 54 (Hsc54), that lacks amino acid residues 464-616 in the protein binding and variable domains of Hsc70. In the present study, we examined nucleocytoplasmic localization of Hsc70 and Hsc54 by using green fluorescent protein (GFP) fusions. GFP-Hsc70 is localized in both the cytoplasm and the nucleus at 37 degrees C and accumulated into the nucleolus/nucleus after heat shock, whereas GFP-Hsc54 always remained exclusively in the cytoplasm under these conditions. Mutation studies indicated that 20 amino acid residues of nuclear localization-related signals, which are missing in Hsc54 but are retained in Hsc70, are required for proper nuclear localization of Hsc70. We further found that Hsc54 contains a functional leucine-rich nuclear export signal (NES, (394)LDVTPLSL(401)) which is differently situated from the previously proposed NES in Saccharomyces cerevisiae Ssb1p. The cytoplasmic localization of Hsc54 was impaired by a mutation in NES as well as by a nuclear export inhibitor, leptomycin B, suggesting that Hsc54 is actively exported from the nucleus to the cytoplasm through a CRM1-dependent mechanism. In contrast, the nucleocytoplasmic localization of Hsc70 was not affected by the same mutation of NES or leptomycin B. These results suggest that the nuclear localization-related signal could functionally mask NES leading to prolonged retention of Hsc70 in the nucleus. An additional mechanism for unmasking the NES may regulate nucleocytoplasmic trafficking of Hsc70.  相似文献   

9.
The Fas-associated death domain (FADD) adaptor protein FADD/Mort-1 is recruited by several members of the tumor necrosis factor receptor (TNFR) superfamily during cell death activated via death receptors. Since most studies have focused on the interaction of FADD with plasma membrane proteins, FADD's subcellular location is thought to be confined to the cytoplasm. In this report, we show for the first time that FADD is present in both the cytoplasm and the nucleus of cells, and that its nuclear localization relies on strong nuclear localization and nuclear export signals (NLS and NES, respectively) that reside in the death-effector domain (DED) of the protein. Specifically, we found that a conserved basic KRK35 sequence of the human protein is necessary for FADD's nuclear localization, since disruption of this motif leads to the confinement of FADD in the cytoplasm. Furthermore, we show that the leucine-rich motif LTELKFLCL28 in the DED is necessary for FADD's nuclear export. Functionally, mutation of the NES of FADD and its seclusion in the nucleus reduces the cell death-inducing efficacy of FADD reconstituted in FADD-deficient T cells.  相似文献   

10.
11.
12.
The nuclear export of the unspliced type D retrovirus mRNA depends on the cis-acting constitutive transport RNA element (CTE) that has been shown to interact with the human TAP (hTAP) protein promoting the export of the CTE-containing mRNAs. We report here that hTAP is a 619-amino-acid protein extending the previously identified protein by another 60 residues at the N terminus and that hTAP shares high homology with the predicted rat and mouse TAP proteins. We found that hTAP is a nuclear protein that accumulates in the nuclear rim and the nucleoplasm. We further demonstrated that hTAP is able to shuttle between the nucleus and the cytoplasm. Identification of the signals responsible for nuclear import (NLS) and export (NES) revealed that they are distinct but partially overlapping. NLS and NES of hTAP are active transferable signals that do not share similarities with known elements. The C-terminal portion contributes further to hTAP's nuclear retention and contains a signal(s) for nuclear rim association. Taken together, our data show that hTAP is a dynamic protein capable of bidirectional trafficking across the nuclear envelope. These data further support hTAP's role as an export factor of the CTE-containing mRNAs.  相似文献   

13.
The Cdc7 serine/threonine kinase activates the initiation of DNA replication by phosphorylating MCM proteins that are bound to the origins of DNA replication. We reported previously that human Cdc7 nuclear import is mediated directly by importin-beta through its binding to the Cdc7 nuclear localization sequence (NLS). Here, we report that human Cdc7 nuclear localization is regulated by two additional elements: nuclear retention (NRS) and export sequences (NES). Cdc7 proteins imported into the nucleus are retained in the nucleus by associating with chromatin, for which NRS-(306-326) is essential. Importantly, this binding appears to be specific to the origin of DNA replication, because the binding of wild-type Cdc7 to origin is 2.4-fold higher than to non-origin DNA. Furthermore, an NRS-defective Cdc7 mutant could not be retained in the nucleus, although it was imported into the nucleus normally. Together, our data suggest that NRS plays an important role in the activation of DNA replication by Cdc7. The Cdc7 proteins unassociated with chromatin are bound by CRM1 via two NES elements: NES1 at 458-467 within kinase insert III, and NES2 at 545-554 within the kinase IX domain. The primary function of the Cdc7-CRM1 association may be to translocate nuclear Cdc7 to the cytoplasm. However, the binding of CRM1 with Cdc7 at NES2 raises an interesting possibility that CRM1 may also down-regulate Cdc7 by masking its kinase domain.  相似文献   

14.
Studies have long been focused on the functions of annexin A2 in the cytoplasm. However, the involvement of annexin A2 in DNA replication as a part of primer recognition protein complex and the presence of nuclear export signal (NES) suggest that annexin A2 is also functional in the nucleus, and its localization in the nucleus is under regulation by interaction with other nuclear factors through its N-terminus. During the study of the mechanism of annexin A2 sequestering in the nucleus and the regulation of its export from the nucleus, in this study, we show that endogenous annexin A2 is present in both the cytoplasm and the nucleus in HeLa, PC-3 and DU-145 cells. While exogenously expressed annexin A2 is excluded from nuclei of annexin A2-null LNCaP cells in a CRM1 (Chromosome Maintenance Region 1) mediated nuclear export, endogenous annexin A2 in HeLa, PC-3 and DU-145 cell lines does not undergo the CRM1 mediated nuclear export. While investigating the mechanism of the nuclear retention of annexin A2, we found that an anti-annexin A2 antibody that recognizes the C-terminus of annexin A2 (D1/274.5) cannot recognize nuclear annexin A2, suggesting that the domain recognized by this antibody may be masked in the nuclei. In order to find out the role of annexin A2 C-terminus in the nuclear retention of annexin A2, we transiently transfected green fluorescence protein (GFP)-fused N-terminal 29 amino acids of annexin A2 to LNCaP, PC-3 and DU-145 cells, and determined that the C-terminus is not required for the nuclear retention of annexin A2. Based on the finding described above, we propose a model for nuclear retention of annexin A2 where the regulation sites reside in the N-terminus and are adjacent to the NES, and upon modification, the NES is exposed and annexin A2 is exported from the nucleus. Electronic Supplementary Material The online version of this article (doi) contains supplementary material, which is available to authorized users.  相似文献   

15.
The nucleocapsid (N) protein of infectious bronchitis virus (IBV) localizes to the cytoplasm and nucleolus and contains an eight-amino-acid nucleolar retention motif. In this study, a leucine-rich nuclear export signal (NES) (291-LQLDGLHL-298) present in the C-terminal region of the IBV N protein was analyzed by using alanine substitution and deletion mutagenesis to investigate the relative contributions that leucine residues make to nuclear export and where these residues are located on the structure of the IBV N protein. The analysis indicated that Leu296 and Leu298 are required for efficient nuclear export of the protein. Structural information indicated that both of these amino acids are available for interaction with protein complexes involved in this process. However, export of N protein from the nucleus/nucleolus was not inhibited by leptomycin B treatment, indicating that N protein nuclear export is independent of the CRM1-mediated export pathway.  相似文献   

16.
MAP kinase phosphatase (MKP)-3 is a cytoplasmic dual specificity protein phosphatase that specifically binds to and inactivates the ERK1/2 MAP kinases in mammalian cells. However, the molecular basis of the cytoplasmic localization of MKP-3 or its physiological significance is unknown. We have used MKP-3-green fluorescent protein fusions in conjunction with leptomycin B to show that the cytoplasmic localization of MKP-3 is mediated by a chromosome region maintenance-1 (CRM1)-dependent nuclear export pathway. Furthermore, the nuclear translocation of MKP-3 seen in the presence of leptomycin B is mediated by an active process, indicating that MKP-3 shuttles between the nucleus and cytoplasm. The amino-terminal noncatalytic domain of MKP-3 is both necessary and sufficient for nuclear export of the phosphatase and contains a single functional leucine-rich nuclear export signal (NES). Even though this domain of the protein also mediates the binding of MKP-3 to MAP kinase, we show that mutations of the kinase interaction motif which abrogate ERK2 binding do not affect MKP-3 localization. Conversely, mutation of the NES does not affect either the binding or phosphatase activity of MKP-3 toward ERK2, indicating that the kinase interaction motif and NES function independently. Finally, we demonstrate that the ability of MKP-3 to cause the cytoplasmic retention of ERK2 requires both a functional kinase interaction motif and NES. We conclude that in addition to its established function in the regulated dephosphorylation and inactivation of MAP kinase, MKP-3 may also play a role in determining the subcellular localization of its substrate. Our results reinforce the idea that regulatory proteins such as MKP-3 may play a key role in the spatio-temporal regulation of MAP kinase activity.  相似文献   

17.
The atypical protein kinase C (PKC) isoenzymes, lambda/iota- and zetaPKC, play important roles in cellular signaling pathways regulating proliferation, differentiation, and cell survival. By using green fluorescent protein (GFP) fusion proteins, we found that wild-type lambdaPKC localized predominantly to the cytoplasm, whereas both a kinase-defective mutant and an activation loop mutant accumulated in the nucleus. We have mapped a functional nuclear localization signal (NLS) to the N-terminal part of the zinc finger domain of lambdaPKC. Leptomycin B treatment induced rapid nuclear accumulation of GFP-lambda as well as endogenous lambdaPKC suggesting the existence of a CRM1-dependent nuclear export signal (NES). Consequently, we identified a functional leucine-rich NES in the linker region between the zinc finger and the catalytic domain of lambdaPKC. The presence of both the NLS and NES enables a continuous shuttling of lambdaPKC between the cytoplasm and nucleus. Our results suggest that the exposure of the NLS in both lambda- and zetaPKC is regulated by intramolecular interactions between the N-terminal part, including the pseudosubstrate sequence, and the catalytic domain. Thus, either deletion of the N-terminal region, including the pseudosubstrate sequence, or a point mutation in this sequence leads to nuclear accumulation of lambdaPKC. The ability of the two atypical PKC isoforms to enter the nucleus in HeLa cells upon leptomycin B treatment differs substantially. Although lambdaPKC is able to enter the nucleus very rapidly, zetaPKC is much less efficiently imported into the nucleus. This difference can be explained by the different relative strengths of the NLS and NES in lambdaPKC compared with zetaPKC.  相似文献   

18.
The Rev protein of equine infectious anemia virus (ERev) exports unspliced and partially spliced viral RNAs from the nucleus. Like several cellular proteins, ERev regulates its own mRNA by mediating an alternative splicing event. To determine the requirements for these functions, we have identified ERev mutants that affect RNA export or both export and alternative splicing. Mutants were further characterized for subcellular localization, nuclear-cytoplasmic shuttling, and multimerization. None of the nuclear export signal (NES) mutants are defective for alternative splicing. Furthermore, the NES of ERev is similar in composition but distinct in spacing from other leucine-rich NESs. Basic residues at the C terminus of ERev are involved in nuclear localization, and disruption of the C-terminal residues affects both functions of ERev. ERev forms multimers, and no mutation disrupts this activity. In two mutants with substitutions of charged residues in the middle of ERev, RNA export is affected. One of these mutants is also defective for ERev-mediated alternative splicing but is identical to wild-type ERev in its localization, shuttling, and multimerization. Together, these results demonstrate that the two functions of ERev both require nuclear import and at least one other common activity, but RNA export can be separated from alternative splicing based on its requirement for a functional NES.  相似文献   

19.
20.
BACKGROUND: 9b is an accessory protein of the SARS-CoV. It is a small protein of 98 amino acids and its structure has been solved recently. 9b is known to localize in the extra-nuclear region and has been postulated to possess a nuclear export signal (NES), however the role of NES in 9b functioning is not well understood. PRINCIPAL FINDINGS/METHODOLOGY: In this report, we demonstrate that 9b in the absence of any nuclear localization signal (NLS) enters the nucleus by passive transport. Using various cell cycle inhibitors, we have shown that the nuclear entry of 9b is independent of the cell cycle. Further, we found that 9b interacts with the cellular protein Crm1 and gets exported out of the nucleus using an active NES. We have also revealed that this NES activity influences the half-life of 9b and affects host cell death. We found that an export signal deficient SARS-CoV 9b protein induces apoptosis in transiently transfected cells and showed elevated caspase-3 activity. CONCLUSION/SIGNIFICANCE: Here, we showed that nuclear shuttling of 9b and its interaction with Crm1 are essential for the proper degradation of 9b and blocking the nuclear export of this protein induces apoptosis. This phenomenon may be critical in providing a novel role to the 9b accessory protein of SARS-CoV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号