首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymatic determination of phospholipase D activity with choline oxidase   总被引:5,自引:0,他引:5  
A new enzymatic method was developed for the assay of phospholipase D [phosphatidylcholine phosphatidohydrolase EC 3.1.4.4] from cabbage leaves using choline oxidase from Arthrobacter globiformis cells. The method was based on the estimation of choline by the following series of enzymatic reactions after ending the phospholipase D reaction: Choline + 202 + h2o Choline oxidase Betaine + 2H2O2 2H2O2 + Phenol + 4-Aminoantipyrine Peroxidase Quinoneimine dye + 4H2O The amount of choline was proportional to the amount of resulting quinoneimine dye with an absorbance maximum at 500 nm. The phospholipase D reaction (choline liberation) was carried out at pH 5.5 in the presence of Ca2+ ions and ended by adding EDTA in conc. Tris-HCl buffer, pH 8, to give a final pH of around 8. The initial rate of the phospholipase D reaction was proportional to the enzyme concentration over the absorbance change range of 0 to 0.25 (equivalent to 0-21 micron of choline) under the optimal reaction conditions.  相似文献   

2.
The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.  相似文献   

4.
Adsorption of DNA to sand and variable degradation rates of adsorbed DNA   总被引:11,自引:0,他引:11  
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

5.
It was shown that the increase of Mg2+ ions concentration in the medium from 0,01 M to 0,03 M speeds up the formation of a codon-dependent complex between 14C-Phe-tRNA and the 30S ribosomal subparticle. Under high MgCl2 concentration (0,02 M) the increase of NH4Cl concentration also accelerates the specific binding of 14C-Phe-tRNA to the 30S subparticle. In the presence of 0,005 M MgCl2 0,5 M urea significantly decreases the rate of the specific binding. 0,5 M ethanol does not have any noticeable effect on the kinetics of the reaction.  相似文献   

6.
Adsorption and desorption of DNA and degradation of adsorbed DNA by DNase I were studied by using a flowthrough system of sand-filled glass columns. Maximum adsorption at 23 degrees C occurred within 2 h. The amounts of DNA which adsorbed to sand increased with the salt concentration (0.1 to 4 M NaCl and 1 mM to 0.2 M MgCl2), salt valency (Na+ less than Mg2+ and Ca2+), and pH (5 to 9). Maximum desorption of DNA from sand (43 to 59%) was achieved when columns were eluted with NaPO4 and NaCl for 6 h or with EDTA for 1 h. DNA did not desorb in the presence of detergents. It is concluded that adsorption proceeded by physical and chemical (Mg2+ bridging) interaction between the DNA and sand surfaces. Degradability by DNase I decreased upon adsorption of transforming DNA. When DNA adsorbed in the presence of 50 mM MgCl2, the degradation rate was higher than when it adsorbed in the presence of 20 mM MgCl2. The sensitivity to degradation of DNA adsorbed to sand at 50 mM MgCl2 decreased when the columns were eluted with 0.1 mM MgCl2 or 100 mM EDTA before application of DNase I. This indicates that at least two types of DNA-sand complexes with different accessibilities of adsorbed DNA to DNase I existed. The degradability of DNA adsorbed to minor mineral fractions (feldspar and heavy minerals) of the sand differed from that of quartz-adsorbed DNA.  相似文献   

7.
A sphingomyelinase, which specifically hydrolyzes sphingomyelin into ceramide and phosphocholine, was solubilized from nuclear matrix fraction of rat ascites hepatoma, AH7974 cells. The solubilized enzyme was subjected to Mono Q column chromatography in an FPLC system. The sphingomyelinase which was adsorbed on the column and eluted at 0.25-0.5 M NaCl was characterized. The enzyme required 10 mM MgCl2, 0.01% Triton X-100, 1 mM dithiothreitol, and a higher concentration of buffer than 1 M for its maximal activity, and the optimal pH was 6.7-7.2 in 2 M Tris/acetic acid or 7.5 in 2 M potassium acetate/acetic acid. N-Ethylmaleimide completely inhibited the enzyme activity at 0.2 mM. Therefore, this enzyme is classified as a Mg2+-dependent, neutral sphingomyelinase. The sphingomyelinase sedimented at 4.3S through a 10-30% glycerol gradient containing 2 M potassium acetate. This enzyme was highly specific to sphingomyelin and did not hydrolyze phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. Various characteristics of the nuclear sphingomyelinase were similar to those of the plasma membrane enzyme except its requirement for a high concentration of buffer and SH-reagent.  相似文献   

8.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

9.
Calorimetric experiments showed a marked effect of Ca2+ and Mg2+ on the thermotropic behaviour of dimyristoyl phosphatidylglycerol. 2. Concentrations of Ca2+ and Mg2+ lower than 1 ion to 2 molecules of phosphatidylglycerol produced a shift of the phase transition to higher temperatures and an increase in the enthalpy change which is consistent with a closer packing of the lipid molecules in the liposomes. 3. Above the 1:2 ratio, freeze-fracture electron microscopy demonstrated typical "crystal" structures both in the presence of Ca2+ and Mg2+. In the presence of Mg2+ a metastable behaviour was noticed in the calorimetric experiments. 4. A Ca2+- and Mg2+-induced shift in the transition temperature and an increase in the enthalpy change was also observed in a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine. However, these mixed samples remained liposomal in structure at any concentration of the divalent ions. 5. Liposomes prepared from a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine in the absence of divalent cations are permeable in the range 10-50 degrees C. Bilayers of mixtures neutralized by Ca2+ or Mg2+ were demonstrated to be completely impermeable to K+, except in the vicinity of the phase transition. 6. The leak of ions from liposomes of a 1:1 mixture of dimyristoyl phosphatidylglycerol and dimyristoyl phosphatidylcholine in the vicinity of the phase transition temperature was considerably less in the presence of Ca2+ than in the presence of Mg2+. 7. It is concluded that there is a correlation between the calorimetric data and the permeability properties of dimyristoyl phosphatidylglycerol-containing bilayers with respect to the influence of Ca2+ and Mg2+.  相似文献   

10.
Live Trypanosoma cruzi amastigotes hydrolyzed p-nitrophenylphosphate (PNPP), phospho-amino-acids and 32P-casein under physiologically appropriate conditions. PNPP was hydrolysed at a rate of 80 nmol.mg-1.h-1 in the presence of 5 mM MgCl2, pH 7.2 at 30 degrees C. In the absence of Mg2+ the activity was reduced 40% and we call this basal activity. At saturating concentration of PNPP, half-maximal PNPP hydrolysis was obtained with 0.22 mM MgCl2. Ca2+ had no effect on the basal activity, could not substitute Mg2+ as an activator and in contrast inhibited the PNPP hydrolysis stimulated by Mg2+ (I50 = 0.43 mM). In the absence of Mg2+ (basal activity) the stimulating half concentration (S0.5) for PNPP was 1.57 mM, while at saturating MgCl2 concentrations the corresponding S0.5 for PNPP for Mg(2+)-stimulated phosphatase activity (difference between total minus basal phosphatase activity) was 0.99 mM. The Mg-dependent PNPP hydrolysis was strongly inhibited by sodium fluoride (NaF), vanadate and Zn2+ but not by tartrate and levamizole. The Mg-independent basal phosphatase activity was insensitive to tartrate, levamizole as well NaF and less inhibited by vanadate and Zn2+. Intact amastigotes were also able to hydrolyse phosphoserine, phosphothreonine and phosphotyrosine but only the phosphotyrosine hydrolysis was stimulated by MgCl2 and inhibited by CaCl2 and phosphotyrosine was a competitive inhibitor of the PNPP hydrolysis stimulated by Mg2+. The cells were also able to hydrolyse 32P-casein phosphorylated on serine and threonine residues but only in the presence of MgCl2. These results indicate that in the amastigote form of T. cruzi there are at least two ectophosphatase activities, one of which is Mg2+ dependent and can dephosphorylate phospho-amino acids and phosphoproteins under physiological conditions.  相似文献   

11.
W C Suh  S Leirmo  M T Record 《Biochemistry》1992,31(34):7815-7825
Comparative studies of the effects of Mg2+ vs Na+ and of acetate (OAc-) vs Cl- on the kinetics of formation and dissociation of E. coli RNA polymerase (E sigma 70)-lambda PR promoter open complexes have been used to probe the mechanism of this interaction. Composite second-order association rate constants ka and first-order dissociation rate constants kd, and their power dependences on salt concentration SKa (SKa identical to d log ka/d log [salt]) and Skd (Skd identical to d log kd/d log [salt]), were determined in MgCl2 and NaOAc to compare with the results of Roe and Record (1985) in NaCl. Replacement of NaCl by MgCl2 reduces the magnitude of Ska 2-fold (Ska = -11.9 +/- 1.1 in NaCl; Ska = -5.2 +/- 0.3 in MgCl2) and (by extrapolation) drastically reduces the magnitude of ka at any specified salt concentration (e.g., approximately 10(6)-fold at 0.2 M). Replacement of NaCl by NaOAc does not significantly affect Ska (Ska = -12.0 +/- 0.7 in NaOAc) and (by extrapolation) increased ka by approximately 80-fold at any fixed [Na+]. In the absence of Mg2+, replacement of NaCl by NaOAc is found to increase the half-life of the open complex by approximately 560-fold at fixed [Na+] without affecting Skd [Skd = 7.6 +/- 0.1 in NaOAc; in NaCl, Skd = 7.7 +/- 0.2 (Roe & Record, 1985)]. Replacement of NaCl by MgCl2 drastically reduces both Skd and the half-life of the open complex at any salt concentration below approximately 0.2 M. Strikingly, Skd = 0.4 +/- 0.1 in MgCl2, indicating that the net uptake of Mg2+ ions in the kinetically significant steps in dissociation of the open complex is much smaller than that expected by analogy with the uptake of approximately 8 Na+ ions in the corresponding steps in NaCl. In NaCl/MgCl2 mixtures, at a constant [NaCl] in the range 0.1-0.2 M, initial addition of MgCl2 (0.5 mM less than or equal to [MgCl2] less than or equal to 1 mM) increases the half-life of the open complex; further addition of MgCl2 causes the half-life to decrease, though the effect of [MgCl2] on kd is always less than that predicted by a simple competitive model. The observed effects of MgCl2 on Skd and kd differ profoundly from those expected from the behavior of kd and Skd in NaCl and NaOAc and indicate that the role of Mg2+ in dissociation is not merely that of a nonspecific divalent competitor with RNAP for interactions with DNA phosphates and of a DNA helix-stabilizer, both of which should cause kd to increase monotonically with increasing [Mg2+].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Preparations of radioactive lysosomes were obtained from mouse kidney after injection of radioactive iodine-labeled bovine ribonuclease. Stability of these lysosomes in various media was estimated from measurements of proteolytic activity towards the ribonuclease, and of ribonuclease retention in particles. The lysosomes were stable at 37 degrees C in isotonic, sucrose-free solutions of KCl, NaCl, and potassium acetate, and in mixtures of these with MgCl2, showing that these salts are relatively impermeant through the lysosomal membranes. The membranes were less permeable to Na+ than to K+. Both KCl and NaCl exerted their optimal protective effects over a broad concentration range above 0.125 M in 0.025 M acetate buffer. Mg2+ enhanced the protective effect of both K4 and Na+; the osmotic effect of 0.075 M NaC1-0.05 M MgCl2 was indistinguishable during the entire course of ribonuclease digestion from that of isotonic sucrose. Osmotic protection by KC1-MgC12 was demonstrated over the H range5.5-7.0. A marked alteration in membrane properties occurs at lower temperatures in 0.11 M KC1-0.01 M MgCl2 such that, at 0 degrees C, K+ permeability is much higher than at 37 degrees C, as shown by a several-fold decrease in stability at the lower temperature.  相似文献   

13.
Absorbance and fluorescence changes of oxacarbocyanine dyes during ATP-induced Ca2+ transport in rabbit sarcoplasmic reticulum were analyzed. The response of the probes is complex and contains contributions from the binding of Ca2+ and ATP to the membrane. In a medium of 0.12 M KCl and 5 mM MgCl2, the fluorescence of Di-O-C5(3) is decreased by Ca2+ or ATP with apparent dissociation constants of 0.2 and 5 micron, respectively. This suggests that oxacarbocyanines respond to binding of Ca2+ and ATP at the active site of Ca2+ transport ATPase. The effect of ATP is observed in the absence of divalent cations. Further changes in the fluorescence or absorbance of cyanine dyes occur at millimolar concentrations of Ca2+ or during ATP-induced Ca2+ uptake, which can be related to Ca2+ binding to low affinity, relatively nonspecific binding sites on the membrane, that can also bind K+ and Mg2+. The optical changes due to Ca2+ accumulation are most pronounced in media of 0.25 M sucrose and much reduced in 0.12 M KCl and 5 mM MgCl2, in accord with competition by K+ and Mg2+ for the low affinity Ca2+ binding sites. These effects must be taken into account in the evaluation of the magnitude and direction of membrane potential in sarcoplasmic reticulum vesicles during Ca2+ uptake and release.  相似文献   

14.
A kinetic study of ATP hydrolysis by soluble ATPase of chloroplasts (CF1) was made. At low concentrations of MgCl2 a linear increase of the reaction rate was observed during the increase in the ATP concentration up to 1 mM. At high concentrations of MgCl2 the dependence was of a more complicated nature. At MgCl2 concentrations lower than 0.1 mM the reaction approached second-order kinetics with respect to Mg2+; the increase in MgCl2 concentration resulted in a decrease of the reaction order. It is assumed that MgATP is the "true" substrate and MgADP the "true" inhibitor of the reaction. A reaction mechanism of ATP hydrolysis is postulated.  相似文献   

15.
Ca2+-binding of S-100 protein was studied using a Ca2+ electrode at pH 6.80. In the presence of 0.1 M KCl and 10 mM MgCl2 (ionic strength 0.13), Ca2+-binding to S-100 protein occurred in three steps with positive cooperativity. The numbers of bound Ca2+ ions in the three steps were 2, 2, and 4. The Ca2+-binding constants were 6.9 x 10(3) M-1, 2.9 x 10(3) M-1, and 3.7 x 10(2) M-1, respectively. The Ca2+-binding constants of the first and second steps obtained in the presence of 33.3 mM MgCl2 or 0.1 M KCl (ionic strength 0.10) were 1.4 times larger than those described above. This suggests that Mg2+ does not inhibit Ca2+-binding of S-100 protein. The increase of KCl concentration from 0.1 to 0.2 M caused a decrease of the Ca2+-binding constants to ca. 50%.  相似文献   

16.
An assay system for detection of Escherichia coli O157:H7 was developed based on immunomagnetic separation of the target pathogen from samples and absorbance measurement of p-nitrophenol at 400 nm from p-nitrophenyl phosphate hydrolysis by alkaline phosphatase (EC 3.1.3.1) on the "sandwich" structure complexes (antibodies coated onto micromagnetic beads--E. coli O157:H7-antibodies conjugated with the enzyme) formed on the microbead surface. The effects of immunoreaction time, phosphate buffer concentration, pH and temperature on the immunomagnetic separation of E. coli O157:H7 from samples were determined and the conditions used for the separation were 1-h reaction time, 1.0 x 10(-2) M PBS, pH 8.0 and 33 degrees C in this system. The effects of MgCl(2) concentration, Tris buffer concentration, pH and temperature on the activity of alkaline phosphatase conjugated on the immuno-"sandwich" structure complexes were investigated after immunomagnetic separation of the target pathogen and the conditions used for the enzymatic amplification were 1.0 x 10(-4) M MgCl(2), 1.0 M Tris buffer, pH 8.0, 28 degrees C and 30-min reaction time during the assay. The selectivity of the system was examined and no interference from the other pathogens including Salmonella typhimurium, Campylobacter jejuni and Listeria monocytogenes was observed. Its working range was from 3.2 x 10(2) to 3.2 x 10(4) CFU/ml, and the relative standard deviation was 2.5-9.9%. The total detection time was less than 2 h.  相似文献   

17.
When the R-form lipopolysaccharide (LPS) from Klebsiella pneumoniae strain LEN-111 (O3-:K1-), from which cationic material had been removed by electrodialysis, was suspended in 50 mM Tris buffer at pH 8.5 containing 0.1 mM or higher concentrations of MgCl2, it formed an ordered two-dimensional hexagonal lattice structure and its center-to-center distance (lattice constant) depended upon the concentration of MgCl2 and reached the shortest value (14 nm) at 10 mM. In contrast, in the presence of 0.1 to 10 mM CaCl2 in place of MgCl2, the electrodialyzed LPS did not form such an ordered hexagonal lattice structure but formed an irregular network structure with a center-to-center distance of 19 to 20 nm. We investigated interaction of Mg2+ and Ca2+ in formation of the hexagonal lattice structure by the electrodialyzed LPS suspended in 50 mM Tris buffer at pH 8.5. When 0.1 mM or higher concentrations of CaCl2 were mixed with 1 mM MgCl2 or when 1 mM or higher concentrations of CaCl2 was mixed with 10 mM MgCl2, the electrodialyzed LPS did not form the hexagonal lattice structure of the magnesium salt type but formed the irregular network structure of the calcium salt type. In the coexistence of equimolar or higher concentrations of CaCl2 together with 1 or 10 mM MgCl2, the binding of Mg to the electrodialyzed LPS was significantly inhibited and, conversely, the binding of Ca was enhanced as compared with when MgCl2 or CaCl2 was present alone. However, the coexistence of 10 times less molar concentrations of CaCl2 did not significantly inhibit the binding of Mg to the electrodialyzed LPS. Therefore, the inhibition of formation of the Mg2(+)-mediated hexagonal lattice structure of the electrodialyzed LPS by equimolar or higher concentrations of CaCl2 accompanied the inhibition of binding of Mg but that by 10 times less molar concentrations of CaCl2 did not accompany it.  相似文献   

18.
Thomas WE  Glomset JA 《Biochemistry》1999,38(11):3310-3319
We studied the influence of membrane lipids, MgCl2, and ATP on the ability of a soluble diacylglycerol kinase to bind to 100-nm lipid vesicles. The enzyme did not bind detectably to vesicles that contained phosphatidylcholine alone or to vesicles that contained 50 mol % phosphatidylcholine + 50 mol % phosphatidylethanolamine. But it did bind to vesicles that contained anionic phosphoglycerides, and maximal binding occurred (in the presence of MgCl2) when the vesicles contained anionic phosphoglycerides alone. When increasing amounts of phosphatidylcholine were included in phosphatidylserine-containing vesicles, enzyme binding to the vesicles decreased by as much as 1000-fold. However, when increasing amounts of phosphatidylethanolamine were included in phosphatidylserine-containing vesicles, little change in binding occurred until the concentration of phosphatidylserine was reduced to below 25 mol %. These results and results obtained with vesicles that contained various mixtures of anionic phosphoglycerides, phosphatidylcholine, phosphatidylethanolamine, and unesterified cholesterol provided evidence that anionic phosphoglycerides were positive effectors of binding, phosphatidylcholine was a negative effector, and phosphatidylethanolamine and unesterified cholesterol were essentially neutral diluents. Other experiments showed that diacylglycerol and some of its structural analogues also were important, positive effectors of enzyme binding and that addition of ATP to the medium increased their effects. The combined results of the study suggest that the enzyme may bind to vesicles via at least two types of binding sites: one type that requires anionic phospholipids and is enhanced by Mg2+ but inhibited by phosphatidylcholine, and one type that requires diacylglycerol and is enhanced by ATP.  相似文献   

19.
The effect of phospholipids on Triton X-100 solubilized (Ca2+ + Mg2+)-ATPase from human erythrocyte membranes has been examined. The enzyme activity was increased by phosphatidylinositol, phosphatidylserine, and phosphatidic acid at both low (2 micrometer) and high (65 micrometer) free Ca2+ concentrations, while phosphatidylcholine had little effect and phosphatidylethanolamine and cardiolipin inhibited the (Ca2+ + Mg2+)-ATPase activity at all Ca2+ concentrations studied. The diacylglycerol, diolein, inhibited the enzyme at high, but not low, Ca2+ concentrations. Low concentrations of phospholipase A2 (1-2 international units) also activated the solubilized enzyme, at least in part by releasing free fatty acids, as the activation was mimicked by oleic acid (1-2 mumol/mg protein) and was abolished by fatty acid depleted bovine serum albumin. The combined activation by saturating levels of phosphatidylserine and calmodulin was additive at 6.5 mM MgCl2, and probably occurred at distinct sites on a regulatory component of the enzyme. The activation by both effectors was antagonized by MgCl2 at similar concentrations. Analysis of various models suggested that phosphatidylserine had two effects on (Ca2+ + Mg2+)-ATPase activity. First, a low Ca2+ affinity form of the enzyme was converted to a high Ca2+ affinity form, which was more sensitive to Ca2+ inhibition. Second, it increased the turnover of the enzyme, probably by enhancing its dephosphorylation, which was mimicked in this study by the Ca2+-dependent p-nitrophenylphosphatase partial reaction.  相似文献   

20.
The effect of calmodulin on the formation and decomposition of the Ca2+-dependent phosphoprotein intermediate of the (Mg2+ + Ca2+)-dependent ATPase in erythrocyte membranes was investigated. In the presence of 60 microM-Ca2+ and 25 microM-MgCl2, calmodulin (0.5-1.5 microgram) did not alter the steady-state concentration of the phosphoprotein, but increased its rate of decomposition. Higher calmodulin concentrations significantly decreased the steady-state concentration of phosphoprotein. Calmodulin (0.5-1.7 microgram) increased Ca2+-transport ATPase activity by increasing the turnover rate of its phosphoprotein intermediate. Increasing the MgCl2 concentration from 25 microM to 250 microM increased the (Mg2+ + Ca2+)-dependent ATPase activity, but decreased the concentration of the phosphoprotein intermediate. Similarly to calmodulin, MgCl2 increased the turnover rate of the Ca2+-transport ATPase complex (about 3-fold). At the higher MgCl2 concentration calmodulin did not further affect the decomposition of the phosphoprotein intermediate. It was concluded that both calmodulin and MgCl2 increase the turnover of the Ca2+-pump by enhancing the decomposition of the Ca2+-dependent phosphoprotein intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号