首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Summary The precise origin of the supernumerary chromosome can be defined in the majority of trisomy 21 cases. This is achieved by evaluating the chromosome 21 short arm polymorphism and analysing restriction fragment length polymorphisms (RFLPs) of multiple chromosome 21 loci. We report a study on 37 Italian families with Down's syndrome. In 35 cases (94.6%) both the parental and the meiotic stage of non-disjunction could be established. Knowledge of the origin of the extra chromosome 21 is a pre-requisite for investigations of genetic or environmental factors that may affect the meiotic process.  相似文献   

2.
The analysis of non-disjunction of chromosome 21 and alphoid DNA variation by using cytogenetic and molecular cytogenetic techniques (quantitative fluorescence in situ hybridization) in 74 nuclear families was performed. The establishment of possible correlation between alphoid DNA variation, parental age, environmental effects, and non-disjunction of chromosome 21 was made. The efficiency of techniques applied was found to be 92% (68 from 74 cases). Maternal non-disjunction wasfound in 58 cases (86%) and paternal non-disjunction - in 7 cases (10%). Post-zygotic mitotic non-disjunction was determined in 2 cases (3%) and one case was associated with Robertsonian translocation 46,XX,der(21;21)(q10;q10), +21. Maternal meiosis I errors were found in 43 cases (64%) and maternal meiosis II errors--in 15 cases (22%). Paternal meiosis I errors occurred in 2 cases (3%) and paternal meiosis I errors--in 5 cases (7%). The lack of the correlation between alphoid DNA variation and non-disjunction of chromosome 21 was established. Sociogenetic analysis revealed the association of intensive drug therapy of infectious diseases during the periconceptual period and maternal meiotic non-disjunction of chromosome 21. The correlation between non-disjunction of chromosome 21 and increased parental age as well as exposure to irradiation, alcohol, tobacco, mutagenic substances was not found. The possible relevance of data obtained to the subsequent studies of chromosome 21 non-disjunction is discussed.  相似文献   

3.
The parental origin and the meiotic stage of non-disjunction have been determined in 139 Down syndrome patients with regular trisomy 21 and in their parents through the analysis of DNA polymorphism. The meiotic error is maternal in 91.60% cases and paternal in 8.39% of cases. Of the maternal cases, 72.41% were due to meiosis I errors (MMI) and 27.58% were due to meiosis II errors (MMII). Of the paternal cases, 45.45% were due to meiosis I (PMI) and 54.54% were due to meiosis II (PMII). The mean maternal ages were 31.6 +/- 5.3 (+/- SD) years in errors from MMI, 32.3 +/- 6.4 years in errors from MMII, 31.4 +/- 4.6 years in errors from PMI and 29.5 +/- 2.7 years in errors from PMII. No significant statistical differences were observed between maternal and paternal errors, further supporting the presence of a constant chromosome 21 non-disjunction error type.  相似文献   

4.
The purpose of this study was the evaluation of aneuploidy frequencies in the spermatozoa of two fathers (DP-4 and DP-5) who had children with Down syndrome (DS) of paternal origin and in whom a previous sperm analysis by fluoresence in situ hybridisation (FISH) had suggested a generalised tendency to meiotic non-disjunction. Sperm samples were simultaneously hybridised with FISH probes for chromosomes 4, 13 and 22. Disomy frequencies for each of the chromosomes and diploidy frequencies were compared with data obtained from nine control donors. Both DS fathers had a statistically significant increase in the frequency of disomy for chromosomes 13 and 22. DP-5 also had an increased frequency of diploid spermatozoa. Our data suggest that the two DS fathers have a generalised susceptibility to meiotic non-disjunction and that acrocentric chromosomes seem to be more sensitive to such disturbance in the meiotic process.  相似文献   

5.
For studying the biology of autosomal trisomies it is necessary to establish the parental origin and meiotic stage of nondisjunction by using genetic markers. Theoretical formulas are obtained for calculating the probability of establishing (1) parental origin and meiotic stage of nondisjunction by using a centromeric marker, (2) parental origin of nondisjunction by using a noncentromeric marker, and (3) meiotic stage, given parental origin of nondisjunction. These theoretical calculations demonstrate that parental origin of nondisjunction can be identified with virtual certainty by utilizing multiple genetic markers along a chromosome arm. Centromeric markers are by themselves inefficient for determining meiotic stage of the error, but the efficiency can be considerably increased if parental origin is known with certainty. Even then, multiple centromeric markers may be necessary.  相似文献   

6.
N V Kovaleva 《Genetika》1992,28(10):154-161
The parental age in 77 families of Down syndrome (DS) children with the known origin of extra chromosome 21 and in 12 families of DS children resulting from de novo translocation (more probable than not in 2 meiotic division) was studied. It was shown that when nondisjunction occurred in the 1st meiotic division, both in oogenesis (n = 30) and spermatogenesis (n = 12), mean parental ages and age distributions were different from that of control (400 couples with normal children). The mean age and age distribution were found to differ from control when nondisjunction occurred in the 2nd meiotic division of oogenesis (n = 19). On the basis of our information and the previously published data, lack of the effect of parental age on chromosome segregation in the Ist meiosis may be inferred. It is chromatid disjunction in the 2nd meiosis which is more probably age-dependent. The reasons preventing elucidation of real associations are under debate.  相似文献   

7.
We have used DNA polymorphisms to study meiotic crossovers of chromosome 21q in 27 nuclear families. Each family had a child with Down syndrome and a congenital heart defect. Twenty DNA polymorphisms on chromosome 21 were used to determine parental and meiotic origin of nondisjunction and to identify crossovers. Twenty-four cases were of maternal origin, and three were of paternal origin. Twenty-two unequivocal crossover events were identified. Sixteen crossovers were observed in 22 chromosome pairs nondisjoining at the second meiotic division. Fifty percent of crossover events in MI nondisjunction are detectable by molecular genetic means. Thus, the results suggest that, in this sample, each nondisjoined chromosome 21 pair has been involved in at least one crossover event.  相似文献   

8.
This report reviews and evaluates the various methods and techniques used for measuring the incidence of spontaneous meiotic non-disjunction in mammals generally and particularly in mouse and man. It also gives the principal results obtained with these methods and techniques and consequently, in a sense, is also a review of the incidence of meiotic non-disjunction in these species. The incidence of non-disjunction is only given for normal meiosis. Studies involving chromosomal aberrations, e.g. of translocation carriers, have not been included.  相似文献   

9.
Summary Fluorescence markers were studied in 40 patients with Down's syndrome and their parents. In 11 cases maternal and in 5 cases paternal non-disjunction could be shown. The disjunctional event occurred in the first meiotic division in 5 maternal and in 2 paternal cases. A second division failure was found in 4 maternal and 2 paternal cases. In 3 cases the failure could either be of first or second meiotic division origin.  相似文献   

10.
The main causes of numerical chromosomal anomalies, including trisomies, arise from an error in the chromosomal segregation during the meiotic process, named a non-disjunction. One of the most used techniques to analyze chromosomal anomalies nowadays is the polymerase chain reaction (PCR), which counts the number of peaks or alleles in a polymorphic microsatellite locus. It was shown in previous works that the number of peaks has a multinomial distribution whose probabilities depend on the non-disjunction fraction F. In this work, we propose a Bayesian approach for estimating the meiosis I non-disjunction fraction F. in the absence of the parental information. Since samples of trisomic patients are, in general, small, the Bayesian approach can be a good alternative for solving this problem. We consider the sampling/importance resampling technique and the Simpson rule to extract information from the posterior distribution of F. Bayes and maximum likelihood estimators are compared through a Monte Carlo simulation, focusing on the influence of different sample sizes and prior specifications in the estimates. We apply the proposed method to estimate F. for patients with trisomy of chromosome 21 providing a sensitivity analysis for the method. The results obtained show that Bayes estimators are better in almost all situations.  相似文献   

11.
We used DNA polymorphic markers on the long arm of human chromosome 21 in order to determine the parental and meiotic origin of the extra chromosome 21 in families with recurrent free trisomy 21. A total of 22 families were studied, 13 in which the individuals with trisomy 21 were siblings (category 1), four families in which the individuals with trisomy 21 were second-degree relatives (category 2), and five families in which the individuals with trisomy 21 were third-degree relatives, that is, their parents were siblings (category 3). In five category 1 families, parental mosaicism was detected, while in the remaining eight families, the origin of nondisjunction was maternal. In two of the four families of category 2 the nondisjunctions originated in individuals who were related. In only one of five category 3 families, the nondisjunctions originated in related individuals. These results suggest that parental mosaicism is an important etiologic factor in recurrent free trisomy 21 (5 of 22 families) and that chance alone can explain the recurrent trisomy 21 in many of the remaining families (14 of 22 families). However, in a small number of families (3 of 22), a familial predisposing factor or undetected mosaicism cannot be excluded.  相似文献   

12.
A number of unique sequence recombinant DNA clones were isolated from a recombinant DNA library constructed from DNA enriched for chromosome 21 by flow sorting. Of these, five were mapped to chromosome 21 using a somatic cell hybrid. Regional mapping of these probes and of a probe previously assigned to chromosome 21, was carried out with the aid of chromosome 21 rearrangements using both chromosome sorting and a somatic cell hybrid. Three probes were shown to be located on either side of the breakpoint 21q21.2. Two of the probes were shown to identify restriction fragment length polymorphisms (RFLPs) with high rare-allele frequencies (0.46 and 0.43). A Bgl II RFLP revealed the parental origin of non-disjunction in three of ten families with Down's syndrome.  相似文献   

13.
We report on the investigation of the parental origin and mode of formation of the two isochromosomes, i(2p) and i(2q), detected in a healthy adult male. Conventional cytogenetic analysis revealed the proband's lack of structurally normal chromosomes 2, these being replaced by an i(2p) and an i(2q). Investigation of the parental origin of the isochromosomes revealed a paternal origin of the i(2p) chromosome and a maternal origin of the i(2q) chromosome. Thus, the formation of both isochromosomes, or at least of the paternal i(2p), appears to have occurred postzygotically. Interestingly, whilst a paternal isodisomy was observed for the entire 2p, maternal heterodisomy was detected for two segments of 2q, separated by a segment showing isodisomy. The results are indicative of an initial error (non-disjunction or i(2q) formation) concerning the maternal chromosomes 2 during meiosis I, which likely favored the subsequent mitotic recombination event resulting in the presence of two isochromosomes. To the best of our knowledge this is the first case of an initial meiotic error, followed by postzygotic trisomy rescue through the formation of isochromosomes, resulting in a normal phenotype. A prenatal detection, by cytogenetic and molecular analysis, of such chromosome abnormality would have led to the incorrect conclusion of a most likely poor prognosis for the fetus.  相似文献   

14.
Over the past few years, several groups have used fluorescence in situ hybridization (FISH) to study aneuploidy in human sperm. Several important observations have derived from these studies, including the demonstration of chromosome-specific variation in non-disjunction frequencies, and the possible association of aneuploidy with environmental agents and with increasing paternal age. However, an important technical limitation of these studies has been the inability to distinguish between autosomal non-disjunction occurring at meiosis I and meiosis II. In the present report, we describe a simple FISH-based approach designed to overcome this limitation. Using oligonucleotide probes capable of distinguishing subtle differences in the alpha satellite sequences of chromosome 17, we demonstrate that (in appropriate heterozygotes) it is possible to simultaneously identify disomic sperm and to determine the meiotic stage of origin of the additional chromosome. This novel approach has important implications for future FISH sperm studies, since the ability to distinguish between meiosis I and meiosis II non-disjunction will make it possible to determine whether putative etiological agents affect chromosome segregation at both, or only one, of the two meiotic stages. Received: 19 March 1997 / Accepted: 12 June 1997  相似文献   

15.
Spontaneous formation of half-translocations (HTs) of X · 2L and Y · 2L types in
females were studied. The HTs were the result of interchange between the and C(2L) autosomal compound in their precentromeric heterochromatic regions. The HTs produced in previous experiments with females were also analysed.The great majority of spontaneous interchanges were of meiotic origin. Of 13 HT offspring yielded by
females, 10 were X-cross-overs. 8 HT individuals among the offspring of females were X-crossovers. Based on the segregation pattern of chromosomes following interchange, it is concluded that interchange takes place during meiotic prophase. Interchange and crossing over are concomitant events giving rise to the trivalent. In this trivalent, the euchromatic region of compound pairs with the X euchromatic region, and the heterochromatic region with the C(2L). The heterochromatic regions of the X and in the trivalent are asynaptic. Two lines of evidence for this partial asynapsis were obtained: (1) the high rate of non-disjunction (34.1% in HT offspring of females); (2) the regular segregation of the X chromosome with C(2R). The crossing over in the X-euchromatic region, which was associated with interchange, was disturbed (a high proportion of multiple exchanges). Crossing-over disturbance and the high level of non-disjunction in the HT offspring were not caused by the presence of the and autosomal compounds in the stock investigated.It is concluded that the spontaneous asynapsis of the X and regions initiates pairing and interchange, thereby giving rise to abnormal crossing over and disjunction. Partial asynapsis of homologues as the sufficient cause for non-disjunction and non-homologue pairing is discussed.  相似文献   

16.
By combining molecular and cytogenetic techniques, we demonstrated the feasibility and desirability of a comprehensive approach to analysis of nondisjunction for chromosome 21. We analyzed the parental origin and stage of meiotic errors resulting in trisomy 21 in each of five families by successfully using cytogenetic heteromorphisms and DNA polymorphisms. The 16 DNA fragments used to detect polymorphisms spanned the length of the long arm and detected recombinational events on nondisjoined chromosomes in both maternal meiosis I and maternal meiosis II errors. The meiotic stage at which errors occurred was determined by sandwiching the centromere between cytogenetic heteromorphisms on 21p and an informative haplotype constructed using two polymorphic DNA probes that map to 21q just below the centromere. This study illustrates the necessity of combining cytogenetic polymorphisms on 21p with DNA polymorphisms spanning 21q to determine (1) the source and stage of meiotic errors that lead to trisomy 21 and (2) whether an association exists between nondisjunction and meiotic recombination.  相似文献   

17.
Summary The differential staining methods for chromosomes have led to the demonstration of more chromosomal polymorphisms. Not rarely, these polymorphisms allow in autosomal trisomies the detection of parental origin of the supernumerary chromosome. In addition, the malsegregation may be ascribed to 1st or 2nd meiotic division in informative families.This approach of analyzing possible causes of trisomies is subject to a considerable bias. Trisomic phenotypes are twice as frequent for 2nd meiotic errors than for 1st meiotic errors. Also, rare chromosome variants seldom occur in matings where malsegregation in 1st meiotic division can be detected. In the present paper this bias is analyzed mathematically on the family as well as on the population level.From this mathematical analysis and from the data in the literature we conclude that Down's syndrome as a whole is caused about 5–10 times more often by a malsegregation in 1st meiotic than by an error in 2nd meiotic division.Mainly from experimental studies in rodents, causes for errors in 1st and 2nd meiotic division are becoming apparent. They are summarized in the context of the results of the present paper.Human population cytogenetics, a subject originated by Court Brown, has not, as yet, required mathematics at all unless we include—as I think we may correctly—the exact study of such variables as parental age and chromosomal measurements. L. S. Penrose (1970)We dedicate this paper to Professor Emeritus P. E. Becker, M.D., with our best wishes for his retirement.  相似文献   

18.
Summary Chromosomal analysis of 100 second metaphases from 19 men attending an infertility clinic for various reasons was carried out to estimate the rate of non-disjunction occurring at first meiotic division. Second metaphases were selected on the basis of the good spread of their chromosomes. Karyotypes were performed using the relative length of the chromosomes and the centromeric index. Among aneuploid cells, only those containing a hyperhaploid complement (24) were regarded as informative. Of the 100 MII cells, two were hyperhaploid. The frequency of aneuploid MII cells following non-disjunction at first meiotic division is compared to the rate of aneuploid spermatozoa observed after using fertilization of zona-free golden hamster eggs.  相似文献   

19.
Parental origin of the extra chromosome in Down's syndrome   总被引:13,自引:1,他引:12  
Summary Chromosome 21 fluorescent heteromorphisms were studied in 42 patients with Down's syndrome, their parents and their siblings. Included in this number are two instances of an aunt and niece affected with trisomy 21, and one of affected siblings. One case has a de novo 21/21 translocation. Blood group, red cell and serum protein markers were also studied for linkage, gene exclusions, associations, and paternity testing. Thirty-one of the trisomy 21 cases were informative for parental origin of the extra chromosome and for stage of meiosis. The non-disjunctional event was of maternal origin in 24; 23 occurred in meiosis I, 1 in meiosis II. Seven were of paternal origin; 5 in meiosis I, and 2 in meiosis II. The translocation case was of paternal origin. A literature search revealed a total of 98 cases informative for the parent of origin of the extra chromosome, of >347 families tested. In addition, 3 de novo translocation cases, of 7 tested, were informative. The data suggest that most cases result from an error in the first meiotic division in the mother, but that a significant proportion are paternal in origin.  相似文献   

20.
Summary Oocytes from parental mice strains NMRI/Han, C57/bl and Balb/c and from F1 hybrid lines were analysed for aneuploidy due to non-disjunction after gonadotropin-stimulated ovulation. No hyperploid oocytes were present in five of the strains studied. F1 hybrids from crosses of NMRI/HanxC57/bl did ovulate, however, a significantly increased number of hyperploid oocytes, although females from their parental strains show a rather low incidence of non-disjunction. The evidence for a genetic basis for non-disjunction is assessed and possible causative factors are discussed.Dedicated to Professor Dr.P.E. Becker on the occasion of his 75th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号