首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The mouse metallothionein II (MT-II) gene is located approximately 6 kilobases upstream of the MT-I gene. A comparison of the sequences of mouse MT-I and MT-II genes (as well as those of other mammals) reveals that the coding regions are highly conserved even at "silent" positions but that the noncoding regions and introns are extremely divergent between primates and rodents. There are four blocks of conserved sequences in the promoters of mouse MT-I, mouse MT-II, and human MT-IIA genes; one includes the TATAAA sequence, and another has been implicated in regulation by heavy metals. Mouse MT-I and MT-II mRNAs are induced to approximately the same extent in vivo in response to cadmium, dexamethasone, or lipopolysaccharide. Mouse MT-I and MT-II genes are regulated by metals but not by glucocorticoids after transfection into HeLa cells.  相似文献   

3.
Southern blot analysis has identified several metallothionein gene sequences in a human pathogenic yeast Candida glabrata. Two of these genes encoding proteins designated MT-I and MT-II have been cloned and sequenced. No introns were found in either of the genes. The complete primary structure of MT-II was also determined by protein sequencing methods. As isolated, MT-I and MT-II consist of 62 and 51 amino acids, respectively. The only residues predicted from the nucleotide sequence but not present in the isolated protein are the amino-terminal methionines in each sequence. MT-I contains 18 cysteines, 14 of which are present as Cys-X-Cys motifs and two additional cysteines in a Cys-X-X-Cys sequence. The sequence of MT-II contains 16 cysteinyl residues, 14 of which are in Cys-X-Cys sequences. Fluorescence spectroscopy indicates the presence of Cu(I)-thiolate bonds in both proteins. The binding stoichiometries are 11-12 for MT-I and 10 for MT-II. Under certain nutritional conditions, a truncated form of MT-II was also produced. Northern analysis of the total cellular RNA from copper-treated cells showed that both MT-I and MT-II genes are regulated by this metal ion in a concentration-dependent fashion. The concentrations of MT-II mRNA appeared to be higher than that of MT-I mRNA at all concentrations of copper sulfate tested. Both genes are inducible by silver but not by cadmium salts. Cadmium ions, however, are effective in reducing the control levels of both MT-I and MT-II mRNAs.  相似文献   

4.
5.
Structure and regulation of the sheep metallothionein-Ia gene   总被引:6,自引:0,他引:6  
Screening of a sheep genomic lambda library with a sheep metallothionein-I cDNA clone resulted in the isolation of a 13,200-base-pair fragment containing a metallothionein gene which DNA sequence analysis identified as the gene encoding the cloned cDNA. The two introns occur at identical positions to those in other mammalian metallothioneins but are considerably larger. The first intron contains a DNA element that is present in a related but not identical form in many places in the sheep genome. Comparison of the promoter sequences of this gene (sMT-Ia) with the promoters of metallothionein genes from other species identified a number of conserved regions which may be important in the regulation of this gene by heavy metals, glucocorticoids and alpha-interferon. In sheep fibroblasts, the levels of sMT-Ia mRNA was found to be maximally elevated (95-fold) in the presence of zinc or cadmium and elevated 30-fold in the presence of copper. Dexamethasone had no effect upon mRNA levels. Thus this gene shows a pattern of regulation similar to the human MT-If gene, but distinct from the other human and mouse metallothionein genes so far reported.  相似文献   

6.
7.
8.
Metallothioneins constitute a multigene family in the yeast Candida glabrata. Two genes, designated metallothionein-I (MT-I) and one member of the metallothionein-II family (MT-II), were cloned and sequenced previously (Mehra, R. K., Garey, J. R., Butt, T. R., Gray, W. R., and Winge, D. R. (1989) J. Biol. Chem. 264, 19747-19753). Southern analysis of the genomic DNA samples from different wild-type isolates indicated that the MT-I gene was always present as a single copy but multiple (3-9) and tandemly arranged copies of one MT-II gene were present in different strains. Strains of C. glabrata highly resistant to copper salts were obtained by repeated culturing of wild-type isolates in medium containing increasing concentrations of copper sulfate. These strains showed further stable chromosomal amplification (greater than 30 copies) of the MT-II gene. The MT-I gene remained as a single copy. Amplified copies of the MT-II gene were always arranged tandemly. One of the copper-resistant strains acquired more copies of the MT-II gene by apparent duplication of the chromosome carrying this gene. The size of the amplification unit was 1.25 kilobases. The principal MT-I and -II genes of C. glabrata were shown to map to different chromosomes by electrophoretic karyotypic analysis. The length of chromosome carrying MT-II gene increased appreciably in strains exhibiting the highest amplification of this gene. Northern analysis showed increased basal levels of MT-II mRNA in strains having highly amplified MT-II locus.  相似文献   

9.
10.
Induction of metallothionein-I (MT-I) and metallothionein-II (MT-II) by glucocorticoids was determined by h.p.l.c. analysis of proteins and Northern-blot analysis of MT mRNAs. Rats were injected with dexamethasone (0.03-10 mumol/kg) and hepatic concentrations of MTs were determined 24 h later. In control rats, only MT-II was detected (9.4 +/- 2.5 micrograms/g of liver), whereas the hepatic concentration of MT-I was below the detection limit (5 micrograms of MT/g). Dexamethasone did not increase MT-I above the detection limit at any dosage tested, but MT-II increased to 2.5 times control values at dosages of 0.30 mumol/kg and higher. Time-course experiments indicated that MT-II reached a maximum at 24 h after a single dosage of dexamethasone and returned to control values by 48 h. To determine whether dexamethasone increased MT-I in liver, samples were saturated with 109Cd, after which the amount of 109Cd in MT-I and MT-II was determined. Results indicated that, by this approach, MT-I and MT-II could be detected in control rats, and there was approx. 1.8 times more 109Cd in MT-II than in MT-I. At 24 h after administration of dexamethasone (1 mumol/kg), there was a small increase in the amount of 109Cd bound to MT-I, whereas the amount of 109Cd bound to MT-II increased to more than 2 times control values. Northern-blot hybridization with mouse cRNA probes indicated that MT-I and MT-II mRNAs increased co-ordinately after administration of dexamethasone. Thus, although glucocorticoids increase both MT-I and MT-II mRNAs, MT-II preferentially accumulates after administration of dexamethasone.  相似文献   

11.
Northern blot analysis revealed that metallothionein (MT) mRNAs accumulate after inhibition of protein synthesis with cycloheximide (CHX) in primary cultures of chick embryo hepatocytes and fibroblasts, as well as in an established mouse hepatoma cell line. Inhibition of RNA synthesis with actinomycin D (AMD) led to rapid loss of MT mRNAs in these cells, whereas CHX dramatically retarded the rate of MT mRNA decay (t1/2 greater than 24 h). These results suggest that CHX causes MT mRNA accumulation primarily by increasing stability of MT mRNA. Thus, changes in MT mRNA turn-over rates may play an important role in regulating the accumulation of MT mRNA. The half-lives of MT mRNAs in chicken and mouse cells were determined by oligodeoxyribonucleotide excess solution hybridization with RNA samples extracted after different periods of exposure to AMD. The half-life of chicken MT (cMT) mRNA in uninduced chicken embryo hepatocytes was 3.6 h. Induction of cMT mRNA by pretreatment of these cells with zinc (Zn) prior to exposure to AMD, did not alter the half-life of cMT mRNA significantly. In contrast, cadmium (Cd) induction led to a 2.5-fold increase in the stability of this mRNA. In uninduced chicken embryo fibroblasts, cMT mRNA levels were too low to allow accurate determination of half-life using the methods employed here. However, the half-life of this mRNA in Zn-induced chicken embryo fibroblasts was 6.2 h, whereas it was 9.3 h in Cd-induced cells. Thus, the turn-over rate of cMT mRNA after Cd-induction is very similar in chick embryo fibroblasts and hepatocytes. These data suggest that the accumulation of MT mRNA in chicken cells may reflect, in part, metal-specific effects on MT mRNA stability. The half-lives of mouse MT-I and MT-II (mMT-I and mMT-II) mRNAs in uninduced BNL hepatoma cells were identical (9.2 h), and were not effectively altered after induction by metals (Zn, Cd) or interleukin-1 beta (IL-1 beta). However, mMT mRNAs in pachytene spermatocytes and round spermatids, freshly isolated from the adult testes, were 2.2- to 4.5-fold more stable than in hepatoma cells. These results suggest that cell-type specific accumulation of mMT mRNAs may be regulated, in part, by mRNA stability.  相似文献   

12.
The expression of three human metallothionein genes, MT-IIA, MT-IF, and MT-IG was studied in the human hepatoblastoma (HepG2), the hepatocarcinoma (Hep3B2), the embryonic kidney (Hek 293), and the lymphoblastoid-derived (Wi-L2) cell lines. The pattern of expression of each specific MT gene in response to various heavy metals was different among the four cell lines studied indicating differential regulation of MT gene expression. The MT-IF or MT-IG and the MT-IIA genes were regulated in a cell-type specific manner in response to heavy metals and dexamethasone, respectively. DNA methylation was shown to be correlated to cell-type specific regulation of MT gene expression since 5-azacytidine treatment resulted in the expression of the MT-IF and MT-IG genes in response to cadmium and zinc in Wi-L2 cells, of the MT-IIA gene in response to dexamethasone in Wi-L2 cells, and of the MT-IG in response to zinc and copper in Hek 293 cells. Furthermore, transfection studies indicated that all the trans-acting factors necessary for the expression of these genes were present and functional in Wi-L2 and Hek 293 cells. The differential level of expression of the MT-IF and MT-IG genes in response to heavy metals in the Hek 293 cell line was shown to be correlated to their chromatin structure.  相似文献   

13.
Metallothionein gene regulation in the preimplantation rabbit blastocyst   总被引:4,自引:0,他引:4  
Expression of metallothionein (MT) genes in the preimplantation rabbit blastocyst was analysed by determination of the levels of MT mRNA and relative rates of MT synthesis. MT was found to be constitutively expressed at low levels in the blastocyst. Exposure of the day-6 blastocyst to zinc ions in vitro rapidly increased the level of MT gene expression in a dose-dependent manner, with a ten-fold induction in the relative rate of synthesis at 400 microM-Zn2+. Ion-exchange chromatography of pulse-labelled blastocyst protein showed that the relative rates of synthesis of both MT-I and MT-II were markedly increased following zinc treatment, with MT-I being the predominant isometallothionein. Zinc induction of MT synthesis in the blastocyst was also detected on day 4 of gestation just after the morula-to-blastocyst transition. In contrast to the zinc effects on MT, in vitro exposure to 10 microM-Cd2+ resulted in a large induction of MT mRNA but only a modest increase in the relative rate of MT synthesis. Cadmium was found to be toxic to the day-6 blastocyst, and 10 microM-Cd2+ induced an acute stress response as indicated by a dramatic induction of heat-shock protein (HSP-70) gene expression.  相似文献   

14.
15.
16.
17.
The expression of metallothionein (MT) and heat shock protein gene families was investigated in normal and in HeLa-derived cadmium-resistant cells, named H454. In the absence of amplification of MT genes H454 cells accumulated elevated concentrations of cadmium ions and synthesized higher levels of MT proteins than unselected HeLa cells. Northern blot analyses revealed higher levels of MT mRNAs in the resistant cells than in wild-type cells after Cd2+and Zn2+exposure. Evaluation of the cytotoxic potential of the different metals confirmed the high resistance to cadmium of the H454 cells. Two proteins of the heat shock family, hsp70 and GRP78, were synthesized in Cd2+-exposed H454 cells at levels comparable to the ones present in Cd2+-treated normal cells. Northern blot analyses of the mRNA levels corresponding to these proteins revealed elevated expression of both hsp70 and GRP78 mRNAs in H454 cells upon exposure to cadmium ions and no response to zinc induction. These data suggest the existence in the H454 cells of a cadmium-specific pathway of regulation of MT and heat shock genes.  相似文献   

18.
Abstract: Metallothionein (MT) protein and mRNA levels were monitored following exposure of rat neonatal primary astrocyte cultures to methylmercury (MeHg). MT-I and MT-II mRNAs were probed on northern blots with an [α-32P]dCTP-labeled synthetic cDNA probe specific for rat MT mRNA. MT-I and MT-II mRNAs were detected in untreated cells, suggesting constitutive MT expression in these cells. The probes hybridize to a single mRNA with a size appropriate for MT, ∼550 and 350 bp for MT-I and MT-II, respectively. Expression of MT-I and MT-II mRNA in astrocyte monolayers exposed to 2 × 10−6 M MeHg for 6 h was increased over MT-I and MT-II mRNA levels in controls. Western blot analysis revealed a time-dependent increase in MT protein synthesis through 96 h of exposure to MeHg. Consistent with the constitutive expression of MTs at both the mRNA level and the protein level, we have also demonstrated a time-dependent increase in MT immunoreactivity in astrocytes exposed to MeHg. The cytotoxic effects of MeHg were measured by the rate of astrocytic d -[3H]aspartate uptake. Preexposure of astrocytes to CdCl2, a potent inducer of MTs, completely reversed the inhibitory effect of MeHg on d -[3H]aspartate uptake that occurs in MeHg-treated astrocytes with constitutive MT levels. Associated with CdCl2 treatment was a time-dependent increase in astrocytic MT levels. In summary, astrocytes constitutively express MTs; treatment with MeHg increases astrocytic MT expression, and increased MT levels (by means of CdCl2 pretreatment) attenuate MeHg-induced toxicity. Increased MT expression may represent a generalized response to heavy metal exposure, thus protecting astrocytes and perhaps also, indirectly, juxtaposed neurons from the neurotoxic effects of heavy metals.  相似文献   

19.
Glucocorticoids decrease type I procollagen synthesis by decreasing the steady state levels of procollagen mRNAs and mRNA synthesis. The present studies were undertaken to determine the functional sequences of the pro alpha 2(I) collagen gene required for the glucocorticoid-mediated decrease of type I procollagen mRNA synthesis. Embryonic mouse fibroblasts were stably transfected with the pR40 DNA CAT construct containing the 5' flanking region fragment from -2048 to +54 and the intronic fragment from +418 to +1524 of the mouse alpha 2(I) collagen gene. Dexamethasone treatment of these pR40 transfected fibroblasts resulted in a significant decrease in CAT activity which agrees with the glucocorticoid-mediated decrease of the steady state levels of type I procollagen mRNAs. To determine the possible role of the first intron fragment in the dexamethasone-mediated decrease of CAT activity, pR36, a CAT plasmid containing the first intron fragment and the SV40 early promoter, was transfected into mouse fibroblasts and treated with dexamethasone. No significant decrease in CAT activity was observed. The dexamethasone-mediated response was then localized within the 5' flanking region by preparing a series of constructs containing internal deletions and transfecting these plasmids into mouse fibroblasts. The regions -2048 to -981 and -506 to -351 were required for the dexamethasone response of gene activity. However, the DNA stretch from -981 to -506 was not. Analysis of the DNA sequences of these regions revealed a single GRE at -1023 to -1018 and a modified doublet at -873 to -856.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号