共查询到20条相似文献,搜索用时 15 毫秒
1.
The Rac GTPase regulates Rho signaling in a broad range of physiological settings and in oncogenic transformation [1-3]. Here, we report a novel mechanism by which crosstalk between Rac and Rho GTPases is achieved. Activated Rac1 binds directly to p190B Rho GTPase-activating protein (RhoGAP), a major modulator of Rho signaling. p190B colocalizes with constitutively active Rac1 in membrane ruffles. Moreover, activated Rac1 is sufficient to recruit p190B into a detergent-insoluble membrane fraction, a process that is accompanied by a decrease in GTP-bound RhoA from membranes. p190B is recruited to the plasma membrane in response to integrin engagement [4]. We demonstrate that collagen type I, a potent inducer of Rac1-dependent cell motility in HeLa cells, counteracts cytoskeletal collapse resulting from overexpression of wild-type p190B, but not that resulting from overexpression of a p190B mutant specifically lacking the Rac1-binding sequence. Furthermore, this p190B mutant exhibits dramatically enhanced RhoGAP activity, consistent with a model whereby binding of Rac1 relieves autoinhibition of p190B RhoGAP function. Collectively, these observations establish that activated Rac1, through direct interaction with p190B, modulates subcellular RhoGAP localization and activity, thereby providing a novel mechanism for Rac control of Rho signaling in a broad range of physiological processes. 相似文献
2.
Noureddine Zebda Yufeng Tian Xinyong Tian Grzegorz Gawlak Katherine Higginbotham Albert B. Reynolds Anna A. Birukova Konstantin G. Birukov 《The Journal of biological chemistry》2013,288(25):18290-18299
p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820–843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation. 相似文献
3.
Regulation of Rho GTPases by p120-catenin. 总被引:23,自引:0,他引:23
Three recent reports indicate that p120-catenin can modulate the activities of RhoA, Rac and Cdc42, suggesting an elegant and previously unexpected mechanism for regulating the balance between adhesive and motile cellular phenotypes. The observations in these reports provide important new clues toward p120's mechanism of action and provide a potential explanation for the metastatic phenotype exhibited in carcinoma cells that have lost E cadherin expression. 相似文献
4.
The molecular mechanisms leading to tumor progression and acquisition of a metastatic phenotype are highly complex and only partially understood. The spatiotemporal regulation of E-cadherin-mediated adherens junctions is essential for normal epithelia function and tissue integrity. Perturbation of the E-cadherin complex assembly is a key event in epithelial-mesenchymal transition and is directed by a huge number of mechanisms that differ greatly with regard to cell types and tissues. The reduction in intercellular adhesion interferes with tissue integrity and allows cancer cells to disseminate from the primary tumor thereby initiating cancer metastasis. In the present review we will summarize the current findings about the influence of Rho GTPases on the formation and maintenance of adherens junction and will then proceed to discuss the involvement of p120-catenin on cell-cell adhesion and tumor cell migration. 相似文献
5.
We investigated changes in cadherin structure at the cell surface that regulate its adhesive activity. Colo 205 cells are nonadhesive cells with a full but inactive complement of E-cadherin-catenin complexes at the cell surface, but they can be triggered to adhere and form monolayers. We were able to distinguish the inactive and active states of E-cadherin at the cell surface by using a special set of monoclonal antibodies (mAbs). Another set of mAbs binds E-cadherin and strongly activates adhesion. In other epithelial cell types these activating mAbs inhibit growth factor-induced down-regulation of adhesion and epithelial morphogenesis, indicating that these phenomena are also controlled by E-cadherin activity at the cell surface. Both types of mAbs recognize conformational epitopes at different interfaces between extracellular cadherin repeat domains (ECs), especially near calcium-binding sites. Activation also induces p120-catenin dephosphorylation, as well as changes in the cadherin cytoplasmic domain. Moreover, phospho-site mutations indicate that dephosphorylation of specific Ser/Thr residues in the N-terminal domain of p120-catenin mediate adhesion activation. Thus physiological regulation of the adhesive state of E-cadherin involves physical and/or conformational changes in the EC interface regions of the ectodomain at the cell surface that are mediated by catenin-associated changes across the membrane. 相似文献
6.
Previous studies demonstrated that p190RhoGAP (p190) negatively affects cytokinesis in a RhoGAP-dependent manner, suggesting that regulation of Rho may be a critical mechanism of p190 action during cytokinesis. P190 localizes to the cleavage furrow (CF) of dividing cells, and its levels decrease during late mitosis by an ubiquitin-mediated mechanism, consistent with the hypothesis that high RhoGTP levels are required for completion of cytokinesis. To determine whether RhoGTP levels in the CF are affected by p190 and to define the phase(s) of cytokinesis in which p190 is involved, we used FRET analysis alone or in combination with time-lapse microscopy. In normal cell division activated Rho accumulated at the cell equator in early anaphase and in the contractile ring, where it co-localized with p190. Real-time movies revealed that cells expressing elevated levels of p190 exhibited multiple cycles of abnormal CF site selection and ingression/regression, which resulted in failed or prolonged cytokinesis. This was accompanied by mislocalization of active Rho at the aberrant CF sites. Quantified data revealed that in contrast to ECT2 and dominate negative p190 (Y1283Ap190), which resulted in hyper-activated Rho, Rho activity in the CF was reduced by wild type p190 in a dose-dependent manner. These results suggest that p190 regulates cytokinesis through modulation of RhoGTP levels, thereby affecting CF specification site selection and subsequent ring contraction. 相似文献
7.
The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin 总被引:1,自引:0,他引:1 下载免费PDF全文
Peacock JG Miller AL Bradley WD Rodriguez OC Webb DJ Koleske AJ 《Molecular biology of the cell》2007,18(10):3860-3872
In migrating cells, actin polymerization promotes protrusion of the leading edge, whereas actomyosin contractility powers net cell body translocation. Although they promote F-actin-dependent protrusions of the cell periphery upon adhesion to fibronectin (FN), Abl family kinases inhibit cell migration on FN. We provide evidence here that the Abl-related gene (Arg/Abl2) kinase inhibits fibroblast migration by attenuating actomyosin contractility and regulating focal adhesion dynamics. arg-/- fibroblasts migrate at faster average speeds than wild-type (wt) cells, whereas Arg re-expression in these cells slows migration. Surprisingly, the faster migrating arg-/- fibroblasts have more prominent F-actin stress fibers and focal adhesions and exhibit increased actomyosin contractility relative to wt cells. Interestingly, Arg requires distinct functional domains to inhibit focal adhesions and actomyosin contractility. The kinase domain-containing Arg N-terminal half can act through the RhoA inhibitor p190RhoGAP to attenuate stress fiber formation and cell contractility. However, Arg requires both its kinase activity and its cytoskeleton-binding C-terminal half to fully inhibit focal adhesions. Although focal adhesions do not turn over efficiently in the trailing edge of arg-/- cells, the increased contractility of arg-/- cells tears the adhesions from the substrate, allowing for the faster migration observed in these cells. Together, our data strongly suggest that Arg inhibits cell migration by restricting actomyosin contractility and regulating its coupling to the substrate through focal adhesions. 相似文献
8.
Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion 总被引:1,自引:0,他引:1 下载免费PDF全文
Spatiotemporal coordination of cell-cell adhesion involving lamellipodial interactions, cadherin engagement, and the lateral expansion of the contact is poorly understood. Using high-resolution live-cell imaging, biosensors, and small molecule inhibitors, we investigate how Rac1 and RhoA regulate actin dynamics during de novo contact formation between pairs of epithelial cells. Active Rac1, the Arp2/3 complex, and lamellipodia are initially localized to de novo contacts but rapidly diminish as E-cadherin accumulates; further rounds of activation and down-regulation of Rac1 and Arp2/3 occur at the contacting membrane periphery, and this cycle repeats as a restricted membrane zone that moves outward with the expanding contact. The cortical bundle of actin filaments dissolves beneath the expanding contacts, leaving actin bundles at the contact edges. RhoA and actomyosin contractility are activated at the contact edges and are required to drive expansion and completion of cell-cell adhesion. We show that zones of Rac1 and lamellipodia activity and of RhoA and actomyosin contractility are restricted to the periphery of contacting membranes and together drive initiation, expansion, and completion of cell-cell adhesion. 相似文献
9.
Hou JC Shigematsu S Crawford HC Anastasiadis PZ Pessin JE 《The Journal of biological chemistry》2006,281(33):23307-23312
During 3T3L1 adipogenesis there is a marked reduction in beta-catenin and N-cadherin expression with a relatively small decrease in p120 catenin protein levels. Cell fractionation demonstrated a predominant decrease in the particulate (membrane-bound) pool of p120 catenin with little effect on the soluble pool, resulting in a large redistribution from the plasma membrane to the cytosol. Reexpression of p120 catenin inhibited constitutive (transferrin receptor) and regulated mannose 6-phosphate receptor and GLUT4 trafficking to the plasma membrane. The inhibition of membrane trafficking was specific for p120 catenin function as this could be rescued by co-expression of N-cadherin. Moreover, overexpression of a p120 catenin deletion mutant (p120delta622-628) or splice variant (p120-4A), neither of which could regulate Rho or Rac activity, showed no significant effect. The inhibition of GLUT4 translocation was also observed upon the simultaneous expression of a constitutively active Rac mutant (Rac1/Val12) in combination with a dominant-interfering Rho mutant (RhoA/Asn19). This was recapitulated by expression of the Rho ADP-ribosylation factor (C3ADP) in combination with constitutively active Rac1/Val12. Moreover, siRNA-mediated knockdown of p120 catenin resulted in increased basal state accumulation of GLUT4 at the plasma membrane. Together, these data demonstrate that p120 catenin plays an important role in maintaining the basal tone of membrane protein trafficking in adipocytes through the dual regulation of Rho and Rac function and accounts for reports implicating Rho or Rac in the control of GLUT4 translocation. 相似文献
10.
Hideaki Naoe Kimi Araki Osamu Nagano Yusuke Kobayashi Jo Ishizawa Tatsuyuki Chiyoda Takatsune Shimizu Ken-ichi Yamamura Yutaka Sasaki Hideyuki Saya Shinji Kuninaka 《Molecular and cellular biology》2010,30(16):3994-4005
Cdh1 is an activator of the anaphase-promoting complex/cyclosome and contributes to mitotic exit and G1 maintenance by targeting cell cycle proteins for degradation. However, Cdh1 is expressed and active in postmitotic or quiescent cells, suggesting that it has functions other than cell cycle control. Here, we found that homozygous Cdh1 gene-trapped (Cdh1GT/GT) mouse embryonic fibroblasts (MEFs) and Cdh1-depleted HeLa cells reduced stress fiber formation significantly. The GTP-bound active Rho protein was apparently decreased in the Cdh1-depleted cells. The p190 protein, a major GTPase-activating protein for Rho, accumulated both in Cdh1GT/GT MEFs and in Cdh1-knockdown HeLa cells. Cdh1 formed a physical complex with p190 and stimulated the efficient ubiquitination of p190, both in in vitro and in vivo. The motility of Cdh1-depleted HeLa cells was impaired; however, codepletion of p190 rescued the migration activity of these cells. Moreover, Cdh1GT/GT embryos exhibited phenotypes similar to those observed for Rho-associated kinase I and II knockout mice: eyelid closure delay and disruptive architecture with frequent thrombus formation in the placental labyrinth layer, respectively. Furthermore, the p190 protein accumulated in the Cdh1GT/GT embryonic tissues. Our data revealed a novel function for Cdh1 as a regulator of Rho and provided insights into the role of Cdh1 in cell cytoskeleton organization and cell motility.The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit complex that functions as an E3 ubiquitin ligase for various cell cycle proteins (19, 46). Proteins ubiquitinated by APC/C are recognized and degraded by the 26S proteasome to ensure proper cell cycle progression. APC/C activity is strictly dependent on coactivator proteins that interact with APC/C during specific phases of the cell cycle. Cdh1 (also known as Fzr, Hct1, or Srw) is one of the coactivators that maintain APC/C activity from anaphase of mitosis until the end of the G1 phase of the cell cycle (43, 53).The role of Cdh1 (APC/CCdh1) on cell-cycle progression has been well studied; however, several studies have shed light into another aspect of Cdh1''s function. For example, expression of Cdh1 is not restricted to cycling cells; APC/CCdh1 is also present and active in quiescent cultured cells (9). Furthermore, immunohistochemical analysis has shown that Cdh1 is expressed in a wide variety of tissues that are predominantly composed of postmitotic cells, such as neurons, where APC/CCdh1 has a high cyclin B ubiquitination activity (1, 16). It has been reported that APC/CCdh1 promotes axonal growth and patterning (20) and is required for neuronal survival (1). These results highlight the importance of the APC/C activator Cdh1 in neurons. However, Cdh1 has also been shown to participate in the differentiation of tissues such as the muscle (25). Given that Cdh1 is ubiquitously expressed in organs containing quiescent cells, there might be additional roles for Cdh1.Rho GTPase proteins play a central role in the regulation of cell shape, polarity, and locomotion via their effects on actin polymerization, actomyosin contractility, cell adhesion, and microtubule dynamics (13). Small G proteins, which include Rho, act as molecular switches that cycle between an inactive GDP-bound state and an active GTP-bound state. The latter form of Rho proteins interacts with and activates downstream effector proteins. The activity of Rho GTPases is controlled by three class of key regulators: (i) guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP to GTP for their activation (41); (ii) GTPase activating proteins (GAPs), which stimulate the intrinsic GTPase activity for their inactivation (8); and (iii) guanine nucleotide dissociation inhibitors (GDIs), which interact with GDP-bound Rho GTPases and sequester them in the cytoplasm to inhibit the exchange of GDP to GTP (33). In addition to these canonical regulations, recent studies indicate that the ubiquitination pathway is also involved in the modulation of Rho GTPase activity. Smurf1, which is a HECT domain E3 ubiquitin ligase, controls the local levels of RhoA at the cell periphery by targeting it for degradation (40, 55). Therefore, the regulatory mechanisms of Rho GTPase activity seem to be more complex than previously thought. It thus remains to be clarified whether other ubiquitin ligases also play a role in Rho signaling by targeting its components directly or indirectly.In this study, we found that the APC/C activator Cdh1 modulated actin organization. Mouse embryonic fibroblasts (MEFs) derived from a homozygous Cdh1 gene-trapped ([GT] Cdh1GT/GT) mouse model displayed decreased numbers of stress fibers and focal adhesions (FAs). Consistent with these phenotypes, Rho activity was apparently reduced in Cdh1-deficient cells. Cdh1 regulated Rho activity via the targeting of p190 for degradation. We also found that Cdh1 knockdown cells showed decreased motility, which was rescued by codepletion of p190. Furthermore, phenotypic similarities between Cdh1GT/GT embryos and ROCK (also known as Rho-kinase, which is the important Rho downstream effector of actin cytoskeleton formation) knockout (KO) mice (44, 49) support our notion that Cdh1 plays a role in the Rho/ROCK signaling axis. Collectively, our findings suggest an alternative role for Cdh1 other than cell cycle regulation and reveal Cdh1 as a new regulator of Rho. 相似文献
11.
The PAR-6 polarity protein regulates dendritic spine morphogenesis through p190 RhoGAP and the Rho GTPase 总被引:2,自引:0,他引:2
The majority of excitatory synaptic transmission in the brain occurs at dendritic spines, which are actin-rich protrusions on the dendrites. The asymmetric nature of these structures suggests that proteins regulating cell polarity might be involved in their formation. Indeed, the polarity protein PAR-3 is required for normal spine morphogenesis. However, this function is independent of association with atypical protein kinase C (aPKC) and PAR-6. Here we show that PAR-6 together with aPKC plays a distinct but essential role in spine morphogenesis. Knockdown of PAR-6 inhibits spine morphogenesis, whereas overexpression of PAR-6 increases spine density, and these effects are mediated by aPKC. Using a FRET biosensor, we further show that p190 RhoGAP and RhoA act downstream of the PAR-6/aPKC complex. These results define a role for PAR-6 and aPKC in dendritic spine biogenesis and maintenance, and reveal an unexpected link between the PAR-6/aPKC complex and RhoA activity. 相似文献
12.
Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane 下载免费PDF全文
The Rho family GTPases RhoA (Rho), Rac1, and Cdc42 are essential effectors of integrin-mediated cell attachment and spreading. Rho activity, which promotes formation of focal adhesions and actin stress fibers, is inhibited upon initial cell attachment to allow sampling of the new adhesive environment. The Abl-related gene (Arg) tyrosine kinase mediates adhesion-dependent inhibition of Rho through phosphorylation and activation of the Rho inhibitor p190RhoGAP-A (p190). p190 phosphorylation promotes its binding to p120RasGAP (p120). Here, we elucidate the mechanism by which p120 binding regulates p190 activation after adhesion. We show that p190 requires its p120-binding domain to undergo Arg-dependent activation in vivo. However, p120 binding does not activate p190RhoGAP activity in vitro. Instead, activation of p190 requires recruitment to the cell periphery. Integrin-mediated adhesion promotes relocalization of p190 and p120 to the cell periphery in wild-type fibroblasts, but not in arg(-/-) fibroblasts. A dominant-negative p120 fragment blocks p190:p120 complex formation, prevents activation of p190 by adhesion, and disrupts the adhesion-dependent recruitment of p190 to the cell periphery. Our results demonstrate that integrin signaling through Arg activates p190 by promoting its association with p120, resulting in recruitment of p190 to the cell periphery where it inhibits Rho. 相似文献
13.
Integrins and cadherins are transmembrane adhesion receptors that are necessary for cells to interact with the extracellular matrix or adjacent cells, respectively. Integrins and cadherins initiate signaling pathways that modulate the activity of Rho family GTPases. The Rho proteins Cdc42, Rac1, and RhoA regulate the actin cytoskeleton. Cdc42 and Rac1 are primarily involved in the formation of protrusive structures, while RhoA generates myosin-based contractility. Here we examine the differential regulation of RhoA, Cdc42, and Rac1 by integrin and cadherin signaling. Integrin and cadherin signaling leads to a decrease in RhoA activity and activation of Cdc42 and Rac1. When the normal RhoA suppression is antagonized or RhoA signaling is increased, cells exhibited impaired spreading on the matrix protein fibronectin and decreased cell-cell adhesion. Spreading on fibronectin and the formation of cell-cell adhesions is decreased in cells expressing dominant negative forms of Cdc42 or Rac1. These data demonstrate that integrins and cadherins regulate Rho proteins in a comparable manner and lead us to speculate that these changes in Rho protein activity participate in a feedback mechanism that promotes further cell-matrix or cell-cell interaction, respectively. 相似文献
14.
p200 RhoGAP, a member of the Rho GTPase-activating protein (RhoGAP) family, was previously implicated in the regulation of neurite outgrowth through its RhoGAP activity. Here we show that ectopic expression of p200 RhoGAP stimulates fibroblast cell proliferation and cell cycle progression, leading to transformation. The morphology of the foci induced by p200 RhoGAP is distinct from that formed by Rac or Rho activation but similar to that induced by oncogenic Ras, raising the possibility that p200 RhoGAP may engage Ras signaling. Expression of p200 RhoGAP results in a significant increase of Ras-GTP and the activation of two downstream signaling pathways of Ras, ERK1/2 and phosphatidylinositol 3-kinase. Inhibition of Ras or ERK1/2, but not phosphatidylinositol 3-kinase, effectively suppresses the foci formation induced by p200 RhoGAP, suggesting that the Ras-ERK pathway is required for p200 RhoGAP-mediated cell transformation. p200 RhoGAP co-localizes with p120 RasGAP in cells and forms a complex with p120 RasGAP, and this interaction is mediated by the C-terminal region and the Src homology 3 domain of p200 RhoGAP and p120 RasGAP, respectively. Mutations of p200 RhoGAP that disrupt interaction with p120 RasGAP abolish its Ras activation and cell transforming activities. Interestingly, the RhoGAP activity of the N-terminal RhoGAP domain in p200 RhoGAP is also required for its full transforming activity, and expression of a dominant negative RhoA mutant that blocks RhoA cycling between the GDP- and GTP-bound states suppresses p200 RhoGAP transformation. These results suggest that a Rho GTPase-activating protein may have a positive input to cell proliferation and provide evidence that p200 RhoGAP can mediate cross-talks between Ras- and Rho-regulated signaling pathways in cell growth regulation. 相似文献
15.
During development of the central nervous system, oligodendrocyte progenitor cells differentiate into mature myelinating cells. The molecular signals that promote this process, however, are not well defined. One molecule that has been implicated in oligodendrocyte differentiation is the Src family kinase Fyn. In order to probe the function of Fyn in this system, a yeast two hybrid screen was performed. Using Fyn as bait, p190 RhoGAP was isolated in the screen of an oligodendrocyte cDNA library. Coimmunoprecipitation and in vitro binding assays verified that p190 RhoGAP bound to the Fyn SH2 domain. Phosphorylation of p190 required active Fyn tyrosine kinase and was increased threefold upon differentiation of primary oligodendrocytes. Moreover, complex formation between p190 and p120 RasGAP occurred in differentiated oligodendrocytes. p190 RhoGAP activity is known to regulate the RhoGDP:RhoGTP ratio. Indeed, expression of dominant negative Rho in primary oligodendrocytes caused a hyperextension of processes. Conversely, constitutively activated Rho caused reduced process formation. These findings define a pathway in which Fyn activity regulates the phosphorylation of p190, leading to an increase in RhoGAP activity with a subsequent increase in RhoGDP, which in turn, regulates the morphological changes that accompany oligodendrocyte differentiation. 相似文献
16.
Rnd proteins function as RhoA antagonists by activating p190 RhoGAP 总被引:12,自引:0,他引:12
Wennerberg K Forget MA Ellerbroek SM Arthur WT Burridge K Settleman J Der CJ Hansen SH 《Current biology : CB》2003,13(13):1106-1115
BACKGROUND: The Rnd proteins Rnd1, Rnd2, and Rnd3 (RhoE) comprise a unique branch of Rho-family G-proteins that lack intrinsic GTPase activity and consequently remain constitutively "active." Prior studies have suggested that Rnd proteins play pivotal roles in cell regulation by counteracting the biological functions of the RhoA GTPase, but the molecular basis for this antagonism is unknown. Possible mechanisms by which Rnd proteins could function as RhoA antagonists include sequestration of RhoA effector molecules, inhibition of guanine nucleotide exchange factors, and activation of GTPase-activating proteins (GAPs) for RhoA. However, effector molecules of Rnd proteins with such properties have not been identified. RESULTS: Here we identify p190 RhoGAP (p190), the most abundant GAP for RhoA in cells, as an interactor with Rnd proteins and show that this interaction is mediated by a p190 region that is distinct from the GAP domain. Using Rnd3-RhoA chimeras and Rnd3 mutants defective in p190 binding, as well as p190-deficient cells, we demonstrate that the cellular effects of Rnd expression are mediated by p190. We moreover show that Rnd proteins increase the GAP activity of p190 toward GTP bound RhoA and, finally, demonstrate that expression of Rnd3 leads to reduced cellular levels of RhoA-GTP by a p190-dependent mechanism. CONCLUSIONS: Our results identify p190 RhoGAPs as effectors of Rnd proteins and demonstrate a novel mechanism by which Rnd proteins function as antagonists of RhoA. 相似文献
17.
Hatanaka K Simons M Murakami M 《American journal of physiology. Heart and circulatory physiology》2011,300(1):H162-H172
To establish the role of vascular endothelial (VE)-cadherin in the regulation of endothelial cell functions, we investigated the effect of phosphorylation of a VE-cadherin site sought to be involved in p120-catenin binding on vascular permeability and endothelial cell migration. To this end, we introduced either wild-type VE-cadherin or Y658 phosphomimetic (Y658E) or dephosphomimetic (Y658F) VE-cadherin mutant constructs into an endothelial cell line (rat fat pad endothelial cells) lacking endogenous VE-cadherin. Remarkably, neither wild-type- nor Y658E VE-cadherin was retained at cell-cell contacts because of p120-catenin preferential binding to N-cadherin, resulting in the targeting of N-cadherin to cell-cell junctions and the exclusion of VE-cadherin. However, Y658F VE-cadherin was able to bind p120-catenin and to localize at adherence junctions displacing N-cadherin. This resulted in an enhanced barrier function and a complete abrogation of Rac1 activation and lamellipodia formation, thereby inhibiting cell migration. These findings demonstrate that VE-cadherin, through the regulation of Y658 phosphorylation, competes for junctional localization with N-cadherin and controls vascular permeability and endothelial cell migration. 相似文献
18.
The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development 总被引:15,自引:0,他引:15
Brouns MR Matheson SF Hu KQ Delalle I Caviness VS Silver J Bronson RT Settleman J 《Development (Cambridge, England)》2000,127(22):4891-4903
Rho GTPases direct actin rearrangements in response to a variety of extracellular signals. P190 RhoGAP (GTPase activating protein) is a potent Rho regulator that mediates integrin-dependent adhesion signaling in cultured cells. We have determined that p190 RhoGAP is specifically expressed at high levels throughout the developing nervous system. Mice lacking functional p190 RhoGAP exhibit several defects in neural development that are reminiscent of those described in mice lacking certain mediators of neural cell adhesion. The defects reflect aberrant tissue morphogenesis and include abnormalities in forebrain hemisphere fusion, ventricle shape, optic cup formation, neural tube closure, and layering of the cerebral cortex. In cells of the neural tube floor plate of p190 RhoGAP mutant mice, polymerized actin accumulates excessively, suggesting a role for p190 RhoGAP in the regulation of +Rho-mediated actin assembly within the neuroepithelium. Significantly, several of the observed tissue fusion defects seen in the mutant mice are also found in mice lacking MARCKS, the major substrate of protein kinase C (PKC), and we have found that p190 RhoGAP is also a PKC substrate in vivo. Upon either direct activation of PKC or in response to integrin engagement, p190 RhoGAP is rapidly translocated to regions of membrane ruffling, where it colocalizes with polymerized actin. Together, these results suggest that upon activation of neural adhesion molecules, the action of PKC and p190 RhoGAP leads to a modulation of Rho GTPase activity to direct several actin-dependent morphogenetic processes required for normal neural development. 相似文献
19.
Michael R. Dohn Meredith V. Brown Albert B. Reynolds 《The Journal of cell biology》2009,184(3):437-450
p120-catenin regulates epithelial cadherin stability and has been suggested to function as a tumor suppressor. In this study, we used anchorage-independent growth (AIG), a classical in vitro tumorigenicity assay, to examine the role of p120 in a different context, namely oncogene-mediated tumorigenesis. Surprisingly, p120 ablation by short hairpin RNA completely blocked AIG induced by both Rac1 and Src. This role for p120 was traced to its activity in suppression of the RhoA–ROCK pathway, which appears to be essential for AIG. Remarkably, the AIG block associated with p120 ablation was completely reversed by inhibition of the downstream RhoA effector ROCK. Harvey-Ras (H-Ras)–induced AIG was also dependent on suppression of the ROCK cascade but was p120 independent because its action on the pathway occurred downstream of p120. The data suggest that p120 modulates oncogenic signaling pathways important for AIG. Although H-Ras bypasses p120, a unifying theme for all three oncogenes is the requirement to suppress ROCK, which may act as a gatekeeper for the transition to anchorage independence. 相似文献
20.
Reynolds AB 《Biochimica et biophysica acta》2007,1773(1):2-7
p120-catenin was first described in 1989 as a Src substrate whose phosphorylation correlated with transformation. It was identified by cDNA cloning in 1992, and shown to interact with cadherins in 1994. Though enigmatic for some time, p120 has emerged as a master regulator of cadherin stability, and an important modulator of RhoGTPase activities. With the discovery of p120 family members and evidence for fundamental roles in cell biology and cancer, the field has expanded dramatically in recent years. As an introduction to this collection of reviews on p120 and its relatives, the editors have requested a personal commentary and historical perspective on the discovery of p120. The anecdotal parts have no particular purpose, but are mostly unpublished and perhaps of interest to some. 相似文献