首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Plasmid pMG1 encodes resistance to gentamicin, streptomycin, sulfonamides, and mercuric ions and also mobilizes pRO161, a transfer-deficient plasmid derived from RP1. Upon mobilization, pRO161 acquires streptomycin resistance (Smr) and can subsequently be remobilized by pMG1 at significantly higher frequencies than pRO161 itself. Both the initial acquisition of Smr and the subsequent mobilization of the transfer-deficient plasmid are recA independent: thus, the Smr determinant appears to be located on a transposon, disignated Tn904. Tn904 transposes to a variety of other plasmids, including RP1, FP2, R388, K, pRO1600, and pBR322, and in some cases the acquisition of this transposon accompanied deletions in the target plasmid. When no deletion occurred, target plasmids gained 5.2 kilobase pairs of DNA and new restriction endonuclease cleavage sites for AvaI, BglII, PstI, SmaI, and SstI. Physical analysis of such plasmids showed that the Tn904 termini are inverted repeat DNA sequences of approximately 124 base pairs. After cloning into vector pRO1723, a single site for restriction endonuclease AvaI was identified within the Smr determinant of Tn904. In Escherichia coli, but not in Pseudomonas aeruginosa. Tn904 shows a gene dosage-dependent expression of streptomycin resistance.  相似文献   

4.
5.
6.
Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA   总被引:21,自引:0,他引:21  
We have examined the effects of assembly of ribosomal proteins S5, S6, S11, S12, S18 and S21 on the reactivities of residues in 16 S rRNA towards chemical probes. The results show that S6, S18 and S11 interact with the 690-720 and 790 loop regions of 16 S rRNA in a highly co-operative manner, that is consistent with the previously defined assembly map relationships among these proteins. The results also indicate that these proteins, one of which (S18) has previously been implicated as a component of the ribosomal P-site, interact with residues near some of the recently defined P-site (class II tRNA protection) nucleotides in 16 S rRNA. In addition, assembly of protein S12 has been found to result in the protection of residues in both the 530 stem/loop and the 900 stem regions; the latter group is closely juxtaposed to a segment of 16 S rRNA recently shown to be protected from chemical probes by streptomycin. Interestingly, both S5 and S12 appear to protect, to differing degrees, a well-defined set of residues in the 900 stem/loop and 5'-terminal regions. These observations are discussed in terms of the effects of S5 and S12 on streptomycin binding, and in terms of the class III tRNA protection found in the 900 stem of 16 S rRNA. Altogether these results show that many of the small subunit proteins, which have previously been shown to be functionally important, appear to be associated with functionally implicated segments of 16 S rRNA.  相似文献   

7.
Strains containing a series of restrictive and non-restrictive mutations in ribosomal protein S12 have been transformed with plasmids carrying the rrnB operon with mutations at positions 1409 and 1491 in 16S rRNA. The effects of the double-mutant constructs have been measured by growth rate, paromomycin and streptomycin sensitivity, resistance and dependence. The results demonstrate a functional interaction between the 1409-1491 region of rRNA and ribosomal protein S12.  相似文献   

8.
Functional large ribosomal subunits of Thermus aquaticus can be reconstituted from ribosomal proteins and either natural or in vitro transcribed 23 S and 5 S rRNA. Omission of 5 S rRNA during subunit reconstitution results in dramatic decrease of the peptidyl transferase activity of the assembled subunits. However, the presence of some ribosome-targeted antibiotics of the macrolide, ketolide or streptogramin B groups during 50 S subunit reconstitution can partly restore the activity of ribosomal subunits assembled without 5 S rRNA. Among tested antibiotics, macrolide RU69874 was the most active: activity of the subunits assembled in the absence of 5 S rRNA was increased more than 30-fold if antibiotic was present during reconstitution procedure. Activity of the subunits assembled with 5 S rRNA was also slightly stimulated by RU69874, but to a much lesser extent, approximately 1.5-fold. Activity of the native T. aquaticus 50 S subunits incubated in the reconstitution conditions in the presence of RU69874 was, in contrast, slightly decreased. The presence of antibiotics was essential during the last incubation step of the in vitro assembly, indicating that drugs affect one of the last assembly steps. The 5 S rRNA was previously shown to form contacts with segments of domains II and V of 23 S rRNA. All the antibiotics which can functionally compensate for the lack of 5 S rRNA during subunit reconstitution interact simultaneously with the central loop in domain V (which is known to be a component of peptidyl transferase center) and a loop of the helix 35 in domain II of 23 S rRNA. It is proposed that simultaneous interaction of 5 S rRNA or of antibiotics with the two domains of 23 S rRNA is essential for the successful assembly of ribosomal peptidyl transferase center. Consequently, one of the functions of 5 S rRNA in the ribosome can be that of assisting the assembly of ribosomal peptidyl transferase by correctly positioning functionally important segments of domains II and V of 23 S rRNA.  相似文献   

9.
A new approach for function and structure study of ribosomes based on oligodeoxyribonucleotide-directed cleavage of rRNA with RNase H and subsequent reconstitution of ribosomal subunits from fragmented RNA has been developed. The E coli 16S rRNA was cleaved at 9 regions belonging to different RNA domains. The deletion of 2 large regions was also produced by cleaving 16S rRNA in the presence of 2 or 3 oligonucleotides complementary to different RNA sites. Fragmented and deleted RNA were shown to be efficiently assembled with total ribosomal protein into 30S-like particles. The capacity to form 70S ribosomes and translate both synthetic and natural mRNA of 30S subunits reconstituted from intact and fragmented 16S mRNA was compared. All 30S subunits assembled with fragmented 16S rRNA revealed very different activity: the fragmentation of RNA at the 781-800 and 1392-1408 regions led to the complete inactivation of ribosomes, whereas the RNA fragmentation at the regions 296-305, 913-925, 990-998, 1043-1049, 1207-1215, 1499-1506, 1530-1539 did not significantly influence the ribosome protein synthesis activity, although it was also reduced. These findings are mainly in accordance with the data on the functional activity of some 16S rRNA sites obtained by other methods. The relations between different 16S RNA functional sites are discussed.  相似文献   

10.
P N Allen  H F Noller 《Cell》1991,66(1):141-148
A C to U substitution at position 1469 of 16S ribosomal RNA (rRNA) from Escherichia coli suppresses streptomycin dependence and causes increased translational error frequencies. Strains containing the rpsL252 or StrM287 streptomycin-dependent alleles are able to grow in the absence of streptomycin when transformed with plasmids containing the U1469 mutation in 16S rRNA. Ribosomes containing wild-type proteins and U1469 mutant 16S rRNA misincorporate leucine in vitro at elevated levels, comparable to that of some typical S4 ram ribosomes. These results provide additional support for the participation of 16S rRNA in maintaining translational accuracy.  相似文献   

11.
A functional pseudoknot in 16S ribosomal RNA.   总被引:37,自引:4,他引:33       下载免费PDF全文
T Powers  H F Noller 《The EMBO journal》1991,10(8):2203-2214
Several lines of evidence indicate that the universally conserved 530 loop of 16S ribosomal RNA plays a crucial role in translation, related to the binding of tRNA to the ribosomal A site. Based upon limited phylogenetic sequence variation, Woese and Gutell (1989) have proposed that residues 524-526 in the 530 hairpin loop are base paired with residues 505-507 in an adjoining bulge loop, suggesting that this region of 16S rRNA folds into a pseudoknot structure. Here, we demonstrate that Watson-Crick interactions between these nucleotides are essential for ribosomal function. Moreover, we find that certain mild perturbations of the structure, for example, creation of G-U wobble pairs, generate resistance to streptomycin, an antibiotic known to interfere with the decoding process. Chemical probing of mutant ribosomes from streptomycin-resistant cells shows that the mutant ribosomes have a reduced affinity for streptomycin, even though streptomycin is thought to interact with a site on the 30S subunit that is distinct from the 530 region. Data from earlier in vitro assembly studies suggest that the pseudoknot structure is stabilized by ribosomal protein S12, mutations in which have long been known to confer streptomycin resistance and dependence.  相似文献   

12.
Era is a small GTP-binding protein and essential for cell growth in Escherichia coli. It consists of two domains: N-terminal GTP-binding and C-terminal RNA-binding KH domains. It has been shown to bind to 16S rRNAs and 30S ribosomal subunits in vitro. Here, we report that a precursor of 16S rRNA accumulates in Era-depleted cells. The accumulation of the precursors is also seen in a cold-sensitive mutant, E200K, in which the mutation site is located in the C-terminal domain. The major precursor molecule accumulated seems to be 17S rRNA, containing extra sequences at both 5' and 3' ends of 16S rRNA. Moreover, the amounts of both 30S and 50S ribosomal subunits relative to the amount of 70S monosomes increase in Era-depleted and E200K mutant cells. The C-terminal KH domain has a high structural similarity to the RbfA protein, a cold shock protein that also specifically associates with 30S ribosomal subunits. RbfA is essential for cell growth at low temperature, and a precursor of 16S rRNA accumulates in an rbfA deletion strain. The 16S rRNA precursor seems to be identical in size to that accumulated in Era mutant cells. Surprisingly, the cold-sensitive cell growth of the rbfA deletion cells was partially suppressed by overproduction of the wild-type Era. The C-terminal domain alone was not able to suppress the cold-sensitive phenotype, whereas Era-dE, which has a 10-residue deletion in a putative effector region of the N-terminal domain, functioned as a more efficient suppressor than the wild-type Era. It was found that Era-dE suppressed defective 16S rRNA maturation, resuming a normal polysome profile to reduce highly accumulated free 30S and 50S subunits in the rbfA deletion cells. These results indicate that Era is involved in 16S rRNA maturation and ribosome assembly.  相似文献   

13.
14.
Modulation of 16S rRNA function by ribosomal protein S12   总被引:2,自引:0,他引:2  
Ribosomal protein S12 is a critical component of the decoding center of the 30S ribosomal subunit and is involved in both tRNA selection and the response to streptomycin. We have investigated the interplay between S12 and some of the surrounding 16S rRNA residues by examining the phenotypes of double-mutant ribosomes in strains of Escherichia coli carrying deletions in all chromosomal rrn operons and expressing total rRNA from a single plasmid-borne rrn operon. We show that the combination of S12 and otherwise benign mutations at positions C1409-G1491 in 16S rRNA severely compromises cell growth while the level and range of aminoglycoside resistances conferred by the G1491U/C substitutions is markedly increased by a mutant S12 protein. The G1491U/C mutations in addition confer resistance to the unrelated antibiotic, capreomycin. S12 also interacts with the 912 region of 16S rRNA. Genetic selection of suppressors of streptomycin dependence caused by mutations at proline 90 in S12 yielded a C912U substitution in 16S rRNA. The C912U mutation on its own confers resistance to streptomycin and restricts miscoding, properties that distinguish it from a majority of the previously described error-promoting ram mutants that also reverse streptomycin dependence.  相似文献   

15.
Summary Escherichia coli strains with preexisting ribosomal mutations were used in order to isolate further ribosomal mutations. The ribosomal mutations used were resistance to erythromycin, spectinomycin, streptomycin or kasugamycin. These mutations cause alteration of specific ribosomal elements, L4, S5, S12 proteins and 16S rRNA respectively. Mutations have been introduced into strains carrying one, two or three of these mutations. Strains with all possible combinations of these four mutations were constructed. The phenotypes of all isolated mutants were tested, and frequently the strains lost one or more of their pre-existing resistances.Thus, functional interactions were revealed among proteins, as well as RNA and proteins within the 30 S ribosomal subunit and as well as between the 30 S and the 50 S ribosomal subunits.  相似文献   

16.
17.
Certain str mutations that confer high- or low-level streptomycin resistance result in the overproduction of antibiotics by Streptomyces spp. The str mutations that confer the high-level resistance occur within rpsL, which encodes the ribosomal protein S12, while those that cause low-level resistance are not as well known. We have used comparative genome sequencing to determine that low-level resistance is caused by mutations of rsmG, which encodes an S-adenosylmethionine (SAM)-dependent 16S rRNA methyltransferase containing a SAM binding motif. Deletion of rsmG from wild-type Streptomyces coelicolor resulted in the acquisition of streptomycin resistance and the overproduction of the antibiotic actinorhodin. Introduction of wild-type rsmG into the deletion mutant completely abrogated the effects of the rsmG deletion, confirming that rsmG mutation underlies the observed phenotype. Consistent with earlier work using a spontaneous rsmG mutant, the strain carrying DeltarsmG exhibited increased SAM synthetase activity, which mediated the overproduction of antibiotic. Moreover, high-performance liquid chromatography analysis showed that the DeltarsmG mutant lacked a 7-methylguanosine modification in the 16S rRNA (possibly at position G518, which corresponds to G527 of Escherichia coli). Like certain rpsL mutants, the DeltarsmG mutant exhibited enhanced protein synthetic activity during the late growth phase. Unlike rpsL mutants, however, the DeltarsmG mutant showed neither greater stability of the 70S ribosomal complex nor increased expression of ribosome recycling factor, suggesting that the mechanism underlying increased protein synthesis differs in the rsmG and the rpsL mutants. Finally, spontaneous rsmG mutations arose at a 1,000-fold-higher frequency than rpsL mutations. These findings provide new insight into the role of rRNA modification in activating secondary metabolism in Streptomyces.  相似文献   

18.
19.
20.
Dissection of the 16S rRNA binding site for ribosomal protein S4   总被引:4,自引:0,他引:4  
The ribosomal protein S4 from Escherichia coli is essential for initiation of assembly of 30S ribosomal subunits. We have undertaken the identification of specific features required in the 16S rRNA for S4 recognition by synthesizing mutants bearing deletions within a 460 nucleotide region which contains the minimum S4 binding site. We made a set of large nested deletions in a subdomain of the molecule, as well as individual deletions of nine hairpins, and used a nitrocellulose filter binding assay to calculate association constants. Some small hairpins can be eliminated with only minor effects on S4 recognition, while three hairpins scattered throughout the domain (76-90, 376-389 and 456-476) are essential for specific interaction. The loop sequence of hairpin 456-476 is important for S4 binding, and may be directly recognized by the protein. Some of the essential features are in phylogenetically variable regions; consistent with this, Mycoplasma capricolum rRNA is only weakly recognized by S4, and no specific binding to Xenopus laevis rRNA can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号