首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosome segment duplications are integral in genome evolution by providing a source for the origin of new genes. In the rice genome, besides an ancient polyploidy event known in the rice common ancestor, it had been identified that there was a special segmental duplication involving chromosomes 11 and 12, but the biological role of this duplication remains unknown. In this study, by using a set of chromosome segment substitution lines (CSSLs) and near isogenic lines (NILs) derived from the indica cultivar 9311 and japonica cultivar Nipponbare, a major QTL (qS12) resulting in hybrid male sterility was mapped within ~400 kb region adjacent to the special duplicated segment on the short arm of chromosome 12. Compared to the japonica cultivar Nipponbare, the two sides of the qS12 candidate region were inverted in the indica cultivar 9311. Among 47 of the 111 rice genotypes evaluated by molecular markers, the inverted sides were detected, and found completely homologous to indica cultivar 9311. These results suggested that the two inverted sides protect the sequence in the qS12 regions from recombination. On the short-arm of chromosome 12, two QTLs S-e and S25, in addition to qS12, were previously detected as a distinct segregation distortion and pollen semi-sterility loci. We propose these three hybrid sterility loci are the same locus, and the duplicated segment on chromosome 12 may play a prominent role in diversification, i.e., sub-speciation of cultivated rice.  相似文献   

2.
Resistance against the tomato fungal pathogen Cladosporium fulvum is often conferred by Hcr9 genes (Homologues of the C. fulvum resistance gene Cf-9) that are located in the Milky Way cluster on the short arm of chromosome 1. These Hcr9 genes mediate recognition of fungal avirulence gene products. In contrast, the resistance gene Cf-Ecp2 mediates recognition of the virulence factor Ecp2 and is located in the Orion (OR) cluster on the short arm of chromosome 1. Here, we report the map- and homology-based cloning of the OR Hcr9 cluster. A method was optimised to generate clone-specific fingerprint data that were subsequently used in the efficient calculation of genomic DNA contigs. Three Hcr9s were identified as candidate Cf-Ecp2 genes. By PCR-based cloning using specific OR sequences, orthologous Hcr9 genes were identified from different Lycopersicon species and haplotypes. The OR Hcr9s are very homologous. However, based on the relative low sequence homology to other Hcr9s, the OR Hcr9s are classified as a new subgroup.Data deposition: The sequence of the Cf-Ecp2 Hcr9 gene cluster and the orthologous Hcr9 sequences have been deposited in the GenBank database (accession No. AY639600..AY639604)  相似文献   

3.
The human natural killer gene complex is located on chromosome 12p12-p13   总被引:3,自引:3,他引:0  
 Natural killer (NK) cells preferentially express several type II glycoproteins of the calcium-dependent lectin superfamily. The genes coding for these molecules are clustered on the distal mouse chromosome 6 and on the rat chromosome 4 in a region designated the NK gene complex. To date, no definite evidence of the presence of a NK gene complex has been found in humans. Here we report the assignment by fluorescence in situ hybridization of the CD94 gene to human chromosome 12p12-p13, in the same region where the CD69 and NKG2A genes had been previously mapped. In addition, using a yeast artificial chromosome contig spanning this region we determined that the human CD94, NKG2A, NKG2C, NKG2E, and NKR-P1A (NKR) genes map to the short arm of chromosome 12. The distal to proximal position of these loci are: NKR- CD69 - CD94/NKG2A/NKG2C/NKG2E. These data demonstrate the existence of a human NK gene complex located within a 5.6 cM interval flanked by the genetic markers D12S397 and D12S89. The physical distance spanned by the NK gene complex in humans ranges between 0.7 and 2.4 megabases. Received: 17 January 1997 / Revised: 10 March 1997  相似文献   

4.
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus.  相似文献   

5.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity.  相似文献   

6.
7.
Summary Quantitative red cell adenylate kinase (AK-1) assay has been used in 8 patients with partial duplication or deletion of chromosome 9 in an attempt to find the precise intrachromosomal location of the structural gene locus. All regions of chromosome 9 are represented in abnormal dosage in at least one patient. A 43% increase in AK-1 activity was found to be associated with duplication of the terminal band of the long arm of chromosome 9. Duplication of all other parts of chromosome 9 were associated with normal enzyme activity. These findings not only confirm the assignment of the AK-1 locus to chromosome 9 made previously in somatic cell hybrids, but suggest a more precise assignment to region 9q33qter. This places the ABO: Np-1: AK-1 linkage group at the distal end of the long arm of chromosome 9.  相似文献   

8.
Summary The genetic control of hexokinase isozymes (ATP: d-hexose-6-phosphotransferase, E.C. 2.7.7.1, HEX) in maize (Zea mays L.) was studied by starch gel electrophoresis. Genetic analysis of a large number of inbred lines and crosses indicates that the major isozymes observed are encoded by two nuclear loci, designated Hex1 and Hex2. Five active allozymes and one null variant are associated with Hex1, while Hex2 has nine active alleles in addition to a null variant. Alleles at both loci govern the presence of single bands, with no intragenic or intergenic heteromers visible, suggesting that maize HEX's are active as monomers. Organelle preparations demonstrate that the products of both loci are cytosolic. All alleles, including the nulls, segregate normally in crosses. Vigorous and fertile plants were synthesized that were homozygous for null alleles at both loci, suggesting that other hexosephosphorylating enzymes exist in maize that are undetected with our assay conditions. Linkage analyses and crosses with B-A translocation stocks place Hex1 on the short arm of chromosome 3, 27 centimorgans from Pgd2 (phosphogluconate dehydrogenase) and Hex2 on the long arm of chromosome 6, approximately 45 centimorgans from Pgd1. It is suggested that the parallel linkages among these two pairs of duplicated genes reflects an evolutionary history involving chromosome segment duplication or polyploidy.Paper No. 10170 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC  相似文献   

9.
Summary A male patient with mental retardation and typical clinical features of 10p trisomy syndrome was found to have a duplication of the short arm of chromosome 10 attached to the short arm of the Y chromosome.Quantitative evaluation of nine red cell enzymes showed significantly increased activity levels of HK1 and, to a lesser extent, of PK, PGI, 6PGD, and G6PD. It is suggested that the HK1 locus may be in the 10pterp12 region. The increased levels of HK1 could affect other erythrocyte metabolic pathways slowing down the physiological rate of cellular senescence and result in increased activity levels of other cell-age-dependent enzymes.  相似文献   

10.
The S1, S2 and S3 genes of the induced sphaerococcoid mutation in common wheat (Triticum aestivum) were mapped using three different F2 populations consisting of 71–96 individual plants. Twenty-four microsatellite markers from homeologous group 3 of T. aestivum were used to map the S1, S2 and S3 genes on chromosomes 3D, 3B and 3A, respectively. The S1 locus was found to be closely linked to the centromeric marker Xgwm456 of the long arm (2.9 cM) and mapped not far (8.0 cM) from the Xgdm72 marker of the short arm of chromosome 3D. The S2 gene was tightly linked to 2 centromeric markers (Xgwm566, Xgwm845) of chromosome 3B. S3 was located between Xgwm2 (5.1 cM), the marker of the short arm, and Xgwm720 (6.6 cM), the marker of the long arm, both of chromosome 3A. Mapping the S1, S2 and S3 loci of the induced sphaerococcoid mutation near the centromeric regions supports the hypothesis that the sphaerococcum type may be due to gene duplication resulting from DNA recombination in the centromeric region. Received: 20 June 1999 / Accepted: 29 July 1999  相似文献   

11.
The genes encoding two pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are located on the proximal long arm of human chromosome 1. Mapping of the CRP and SAP genes between the centromere and band q32 was achieved by Southern blot analysis of DNA from a panel of human × Chinese hamster somatic cell hybrids carrying defined fragments of human chromosome 1. Both genes were localized more precisely between bands q12 and q23 by in situ hybridization to human metaphase chromosomes.  相似文献   

12.
Summary Genetic mapping of polymorphic C-bands allows direct comparisons between genetic and physical maps. Eleven C-bands and two seed storage protein genes on chromosome 1B, polymorphic between Langdon durum and four accessions of T. dicoccoides, were used to study the distribution of recombination along the entire length of the chromosome. Recombination in the short arm was almost completely restricted to the satellite, two-thirds of the arm's length from the centromere; the Gli-B1 gene was found to be tightly linked to the telomeric C-band. In the long arm, the distal 51.4% of the arm accounted for 88% of recombination; the proximal half of the arm accounted for the remaining 12%. While the amount of crossing-over differed significantly between the four T. dicoccoides 1B chromosomes, there were no significant differences in the relative distributions of crossing-over along the chromosome. Consequently, the genetic maps obtained from the four individual T. dicoccoides chromosomes were combined to yield a consensus map of 14 markers (including the centromere) for the chromosome.  相似文献   

13.
Summary The nucleolus organizer region located on the short arm of chromosome 1R of rye consists of a large cluster of genes that code for ribosomal RNA (designated the Nor-R1 locus). The genes in the cluster are separated by spacer regions which can vary in length in different rye lines. Differences in the spacer regions were scored in two families of F2 progeny. Segregation also occurred, in one or both of the families, at two seed protein loci and at two isozyme loci also located on chromosome 1R. The seed protein loci were identified as the Sec 1 locus controlling -secalins located on the short arm of chromosome 1R and the Sec 3 locus controlling high-molecular-weight secalins located on the long arm of 1R. The two isozyme loci were the Gpi-R1 locus controlling glucose-phosphate isomerase isozymes and the Pgd 2 locus controlling phosphogluconate dehydrogenase isozymes. The data indicated linkage between all five loci and map distances were calculated. The results indicate a gene order: Pgd 2 ... Sec 3 ... [centromere] ... Nor-R1 ... Gpi-R1 ... Sec 1. Evidence was obtained that rye possesses a minor 5S RNA locus (chromosome location unknown) in addition to the major 5S RNA locus previously shown to be located on the short arm of chromosome 1R.  相似文献   

14.
In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far – also called SIX genes – are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.  相似文献   

15.
A new CMS system designated as ‘msH1’ has been reported in bread wheat using the cytoplasm of H. chilense. While testing this system in different wheat backgrounds, a highly fertile line with chromosome number 42 plus an extra acrocentric chromosome was obtained. The extra chromosome did not pair with any wheat chromosome at meiosis, and progeny from this line which lack the acrocentric chromosome showed pollen abortion and male sterility. In order to establish the origin of this chromosome, FISH using H. chilense genomic DNA as probe was used and showed that it had originated from H. chilense chromosome(s). The novel chromosome did not possess sequences similar to wheat rDNA; however, the probe pSc119.2 from S. cereale containing the 120 bp family was found to occur at the end of its long arm. Data obtained from FISH and EST molecular markers confirm that the long arm of the acrocentric chromosome is indeed, the short arm of chromosome 1Hch from H. chilense. We suggest that the novel chromosome originated from a deletion of the distal part of the long arm of chromosome 1Hch. Neither the 1HchS short arm, nor the whole chromosome 1Hch restores pollen fertility of the alloplasmic wheat. Therefore, the restorer gene on the acrocentric chromosome must be located on the retained segment from the hypothetical 1HchL, while some pollen fertility inhibitor could be present on the deleted 1HchL distal segment. Disomic addition of the acrocentric chromosome was obtained and this line resulted fully stable and fertile.  相似文献   

16.
Neutron scattering studies are reported on subcomponent C1q of component C1 of human complement, and on C1, the complex of C1q with subunit C1r2C1s2. For C1q, the molecular weight was determined as 460,000. The radius of gyration at infinite contrast Rc is 12.8 nm. The Rc values for the proteolytically cleaved forms of C1q, namely the heads and the stalks, are 1.5 to 2 nm and 11 nm, respectively, and thus the axis-to-arm angle of C1q is estimated at 45 °. Neutron data for subunit C1r2C1s2 are published elsewhere. The neutron data on C1 lead to an Rc value of 12.6 nm for proenzymic C1 and a molecular weight of 820,000. The wideangle scattering curve of C1q exhibits a minimum at Q = 0.28 nm?1 and a maximum at 0.39 nm?1; on the addition of C1r2C1s2, this minimum disappears. The neutron data on C1 indicate that C1q and C1r2C1s2 have complexed with a large conformational change in one or both parts. No conformational changes can be detected on the activation of C1 by this method.  相似文献   

17.
A. Montpetit  D. Sinnett 《Human genetics》1999,105(1-2):162-164
Rearrangements of the short arm of chromosome 12 are frequently observed in hematological malignancies and in certain solid neoplasias. Loss of heterozygosity studies identified a small genetic interval on chromosome 12p12.3 that is frequently deleted in childhood acute lymphoblastic leukemia (ALL). Two genes, ETV6 and CDKN1B, are located within this interval although evidence has accumulated that an as yet unidentified tumor suppressor gene is closely linked. Here we report the physical mapping of the G-protein coupled receptor 19 (GPR19) at approximately 40 kb from CDKN1B. The delineation of the gene order tel-ETV6-CDKN1B-GPR19-cen excluded GPR19 from the region commonly deleted in childhood ALL, but it could still be the target of genetic alterations found in other cancers. Electronic Publication  相似文献   

18.
Summary A genetic map of barley chromosome 5 (1H) was constructed using DNA markers. Seventeen loci were mapped to 15 locations, and these included the known-function loci (in order from the most distal on the long arm) XAdh (alcohol dehydrogenase), XLec (homologous to wheat germ agglutinin), XHor3 (D-hordein), XPpdk (pyruvate orthophosphate dikinase), centromere, XIcal (chymotrypsin inhibitor), and 6 loci in the B- and C-hordein cluster towards the end of the short arm. The gene order on the barley map agreed closely with that of chromosome 1 of rye. Intervarietal comparisons showed that single-copy cDNA and genomic DNA probes revealed about twice the level of RFLPs found in wheat.  相似文献   

19.
The murine Pax-7 gene and the cognate human gene, formerly designated HuP1, are members of the multi-gene paired-box-containing class of developmental regulatory genes first identified in Drosophila. By analysis of somatic cell hybrids segregating human chromosomes, the gene encoding PAX7 was localized to human chromosome 1. Fluorescence in situ hybridization confirmed this assignment and allowed mapping of the gene to the terminal region of the short arm (1p36) of the chromosome. Additionally, these results confirm the extensive homology between human chromosome 1p and the distal segment of mouse chromosome 4, extending from bands C5 through E2.  相似文献   

20.
Two type II keratin genes are localized on human chromosome 12   总被引:3,自引:0,他引:3  
Summary Human genomic DNA containing two type II keratin genes, one coding for keratin 1 (K1, a 68-kD basic protein) and another closely linked type II gene 10–15 kb upstream (K?, gene product unknown), was isolated on a single cosmid clone. EcoRI restriction fragments of the cosmid were subcloned into pGEM-3Z, and specific probes comprising the C-terminal coding and 3 noncoding regions of the two genes were constructed. The type II keratin genes were localized by in situ hybridization of the subcloned probes to normal human lymphocyte chromosomes. In a total of 70 chromosome spreads hybridized with the K? probe (gHK?-3, PstI, 800 bp), 36 of the 105 grains observed were on chromosome 12, and 32 of these were clustered on the long arm near the centromere (12q11–13). In 100 labeled metaphases hybridized with the K1 probe (gHK1–3, BamHI-PstI, 2100 bp), 53 grains localized to chromosome 12 and 46 of these were found in the same region (q11–13). Therefore, both the gene for human keratin 1, a specific marker for terminal differentiation in mammalian epidermis, and another closely linked unknown type II keratin gene (K?, 10–15 kb upstream of K1) are on the long arm (q11–13) of human chromosome 12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号