首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

3.
Toluene-induced cells of Pseudomonas putida F1 removed trichloroethylene from growth media at a significantly greater initial rate than the methanotroph Methylosinus trichosporium OB3b. With toluene-induced P. putida F1, the initial degradation rate varied linearly with trichloroethylene concentration over the range of 8 to 80 microM (1.05 to 10.5 ppm). At 80 microM (10.5 ppm) trichloroethylene and 30 degrees C, the initial rate was 1.8 nmol/min per mg of total cell protein, but the rate decreased rapidly with time. A series of mutant strains derived from P. putida F1 that are defective in the todC gene, which encodes the oxygenase component of toluene dioxygenase, failed to degrade trichloroethylene and to oxidize indole to indigo. A spontaneous revertant selected from a todC culture regained simultaneously the abilities to oxidize toluene, to form indigo, and to degrade trichloroethylene. The three isomeric dichloroethylenes were degraded by P. putida F1, but tetrachloroethylene, vinyl chloride, and ethylene were not removed from incubation mixtures.  相似文献   

4.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

5.
Toluene dioxygenase (Tod) enzyme activity can be measured by the conversion of indole to indigo. Indigo is measured spectrophotometrically at 600 nm. However, this method is inadequate to measure the whole-cell enzyme activity when interference by suspended biomass is present. Indoxyl is a highly fluorescent intermediate in the conversion of indole to indigo by Tod. A fluorescence-based assay was developed and applied to monitor Tod activity in whole cells of Pseudomonas putida F1 biofilm from a continuously operated biofilter. Suspended growth studies with pure cultures indicated that indoxyl, as measured by fluorescence, correlated with indigo production (r(2)=0.89) as measured by spectrophotometry. Whole-cell enzyme activity was followed during growth on a minimal medium containing toluene. The maximum normalized whole cell enzyme activity of 19+/-1.5x10(-4) mg indigo (mg protein)(-1) min(-1) was reached during early stationary phase. P. putida F1 cells from a biofilm grown on vapor phase toluene had a normalized whole-cell enzyme activity of 5.0+/-0.2x10(-4) mg indigo (mg protein)(-1) min(-1). The half-life of whole-cell enzyme activity was estimated to be between 5.5 and 8 h in both suspended and biofilm growth conditions.  相似文献   

6.
Toluene dioxygenase from Pseudomonas putida F1 has been implicated as an enzyme capable of degrading trichloroethylene. This has now been confirmed with Escherichia coli JM109(pDTG601) that contains the structural genes (todC1C2BA) of toluene dioxygenase under the control of the tac promoter. The extent of trichloroethylene degradation by the recombinant organism depended on the cell concentration and the concentration of trichloroethylene. A linear rate of trichloroethylene degradation was observed with the E. coli recombinant strain. In contrast, P. putida F39/D, a mutant strain of P. putida F1 that does not contain cis-toluene dihydrodiol dehydrogenase, showed a much faster initial rate of trichloroethylene degradation which decreased over time.  相似文献   

7.
Toluene dioxygenase oxidizes toluene to (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene. This reaction is catalyzed by a multienzyme system that is induced in cells of Pseudomonas putida F1 during growth on toluene. One of the components of toluene dioxygenase has been purified to homogeneity and shown to be an iron-sulfur protein that has been designated ferredoxinTOL. The molecular weight of ferredoxinTOL was calculated to be 15,300, and the purified protein was shown to contain 2 g of atoms each of iron- and acid-labile sulfur which appear to be organized as a single [2Fe-2S]cluster. Solutions of ferredoxinTOL were brown in color and showed absorption maxima at 277, 327, and 460 nm. A shoulder in the spectrum of the oxidized protein was discernible at 575 nm. Reduction with sodium dithionite or NADH and ferredoxinTOL reductase resulted in a decrease in visible absorbance at 460 and 575 nm, with a concomitant shift in absorption maxima to 382 and 438 nm. The redox potential of ferredoxinTOL was estimated to be -109 mV. In the oxidized state, the protein is diamagnetic. However, upon reduction it exhibited prominent electron paramagnetic resonance signals with anisotropy in g values (gx = 1.81, gy = 1.86, and gz = 2.01). Anaerobic reductive titrations revealed that ferredoxinTOL is a one-electron carrier that accepts electrons from NADH in a reaction that is mediated by a flavoprotein (ferredoxinTOL reductase). The latter is the first component in the toluene dioxygenase system. Reduced ferredoxinTOL can transfer electrons to cytochrome c or to a terminal iron-sulfur dioxygenase (ISP-TOL) which catalyzes the incorporation of molecular oxygen into toluene and related aromatic substrates.  相似文献   

8.
Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that the monooxygen insertion is mediated by an active-site process. Experiments with 3-[2H]indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases.  相似文献   

9.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

10.
Escherichia coli JM109(pDTG601), containing the todC1C2BA genes encoding toluene dioxygenase from Pseudomonas putida F1, oxidizes indan to (-)-(1R)-indanol (83% R) and trans-1,3-indandiol. Under similar conditions, P. putida F39/D oxidizes indan to (-)-(1R)-indanol (96% R), 1-indanone, and trans-1,3-indandiol. The differences in the enantiomeric composition of the 1-indanols formed by the two organisms are due to the presence of a 1-indanol dehydrogenase in P. putida F39/D that preferentially oxidizes (+)-(1S)-indanol.  相似文献   

11.
Whole cells of Pseudomonas putida containing toluene dioxygenase were able to remove all detectable trichloroethylene (TCE) from assay mixtures. The capacity of cells to remove TCE was 77 microM/mg of protein with an initial rate of removal of 5.2 nmol/min/ng of protein. TCE oxidation resulted in a decrease in the growth rate of cultures and caused rapid cell death. Addition of dithiothreitol to assay mixtures increased the TCE removal capacity of cells by up to 67% but did not prevent TCE-mediated cell death. TCE induced toluene degradation by whole cells to a rate approximately 40% of that induced by toluene itself.  相似文献   

12.
Pseudomonas putida PpF1 degraded toluene via a dihydrodiol pathway to tricarboxylic acid cycle intermediates. The initial reaction was catalyzed by a multicomponent enzyme, toluene dioxygenase, which oxidized toluene to (+)-cis-1(S),2(R)-dihydroxy-3-methylcyclohexa-3,5-diene (cis-toluene dihydrodiol). The enzyme consisted of three protein components: NADH-ferredoxintol oxidoreductase (reductasetol), ferredoxintol, and a terminal oxygenase which is an iron-sulfur protein (ISPtol). Mutants blocked in each of these components were isolated after mutagenesis with nitrosoguanidine. Mutants occurred as colony morphology variants when grown in the presence of toluene on indicator plates containing agar, mineral salts, a growth-supporting nutrient (arginine), 2,3,5-triphenyltetrazolium chloride (TTC), and Nitro Blue Tetrazolium (NBT). Under these conditions, wild-type colonies appeared large and red as a result of TTC reduction. Colonies of reductasetol mutants were white or white with a light blue center, ferredoxintol strains were light blue with a dark blue center, and strains that lacked ISPtol gave dark blue colonies. Blue color differences in the mutant colonies were due to variations in the extent of NBT reduction. Strains lacking all three components appeared white. Toluene dioxygenase mutants were characterized by assaying toluene dioxygenase activity in crude cell extracts which were complemented with purified preparations of each protein component. Between 40 and 60% of the putative mutants selected from the NBT-TTC indicator plates were unable to grow with toluene as the sole source of carbon and energy. This method should prove extremely useful in isolating mutants in other multicomponent oxygenase enzyme systems.  相似文献   

13.
14.
As measured by the toluene-induced bioluminescent response of Pseudomonas putida TVA8 in batch experiments, toluene dioxygenase (Tod) enzyme activities are dependent on toluene concentration between 0 and 30 mg/L. To provide a measure of the Tod activity for use in Michaelis-Menten competitive-inhibition kinetics, a correlation between toluene concentration and induced Tod activity as measured by an induced bioluminescent response of P. putida TVA8 is presented as a nondimensional Tod activity parameter. A packed-bed, radial-flow bioreactor (RFB) using the bioreporter P. putida TVA8A serves as the model system for studying the effect of the enzyme activity parameter on model predictions of vapor-phase toluene oxidation and trichloroethylene (TCE) cometabolism. Mass balances were performed on a differential section of the RFB to describe the radial transport of vapor-phase toluene and TCE through a bulk gas phase and the concomitant biological reaction in a stationary biofilm phase. The finite-element Galerkin weak-statement formulation with first-order basis functions was used to find the optimum solution to the highly nonlinear, coupled equations. For this RFB system with toluene concentrations less than 1 mg/L in the bulk gas phase, the Tod activity parameter enables accurate predictions of steady-state TCE degradation rate (0.27 microg TCE/min).  相似文献   

15.
Pseudomonas putida NCIMB 11767 oxidized phenol, monochlorophenols, several dichlorophenols and a range of alkylbenzenes (C1–C6) via an inducible toluene dioxygenase enzyme system. Biphenyl and naphthalene were also oxidized by this enzyme. Growth on toluene and phenol induced the meta-ring-fission enzyme, catechol 2,3-oxygenase, whereas growth on benzoate, which did not require expression of toluene dioxygenase, induced the ortho-ringcleavage enzyme, catechol 1,2-oxygenase. Monochlorobenzoate isomers and 2,3,5-trichlorophenol were gratuitous inducers of toluene dioxygenase, whereas 3,4-dichlorophenol was a fortuitous oxidation substrate of the enzyme. The organism also grew on 2,4- and 2,5-dichloro isomers of both phenol and benzoate, on 2,3,4-trichlorophenol and on 1-phenylheptane. During growth on toluene in nitrogen-limited chemostat culture, expression of both toluene dioxygenase and catechol 2,3-oxygenase was positively correlated with increase in specific growth rate (0.11–0.74 h-1), whereas the biomass yield coefficient decreased. At optimal dilution rates, the predicted performance of a 1-m3 bioreactor supplied with 1 g nitrogen l-1 for removal of toluene was 57 g day-1 and for removal of trichloroethylene was 3.4 g day-1. The work highlights the oxidative versatility of this bacterium with respect to substituted hydrocarbons and shows how growth rate influences the production of competent cells for potential use as bioremediation catalysts. Received: 26 June 1995 / Received revision: 4 September 1995 / Accepted: 20 September 1995  相似文献   

16.
Liu J  Amemiya T  Chang Q  Qian Y  Itoh K 《Biodegradation》2012,23(5):683-691
Trichloroethylene (TCE) is extensively used in commercial applications, despite its risk to human health via soil and groundwater contamination. The stability of TCE, which is a useful characteristic for commercial application, makes it difficult to remove it from the environment. Numerous studies have demonstrated that TCE can be effectively removed from the environment using bioremediation. Pseudomonas putida F1 is capable of degrading TCE into less hazardous byproducts via the toluene dioxygenase pathway (TOD). Unfortunately, these bioremediation systems are not self-sustaining, as the degradation capacity declines over time. Fortunately, the replacement of metabolic co-factors is sufficient in many cases to maintain effective TCE degradation. Thus, monitoring systems must be developed to predict when TCE degradation rates are likely to decline. Herein, we show evidence that tod expression levels correlate with the ability of P. putida F1 to metabolize TCE in the presence of toluene. Furthermore, the presence of toluene improves the replication of P. putida F1, even when TCE is present at high concentration. These findings may be applied to real world applications to decide when the bioremediation system requires supplementation with aromatic substrates, in order to maintain maximum TCE removal capacity.  相似文献   

17.
The toluene dioxygenase genes from Pseudomonas putida NCIMB 11767 were isolated by PCR amplification from recombinant plasmid, p1/1. The genes were subcloned into pUC18 and pKK223-3 and expressed under the lac and tac promoters, respectively. In both cases, toluene cis-glycol was produced, with higher levels of product formation when the genes were expressed from the tac promoter.  相似文献   

18.
19.
The genes encoding toluene dioxygenase, toluene cis-glycol dehydrogenase and catechol 2.3-oxygenase from Pseudomonas putida NCIB 11767 were cloned and expressed in Escherichia coli HB101 on a 20 kb fragment. The recombinant strain produced indigo and a variety of other coloured products. Although the enzymes were expressed in the absence of inducers, further induction was observed in the presence of toluene or benzene, implying the presence of regulatory elements on the 20 kb insert.  相似文献   

20.
Yu H  Kim BJ  Rittmann BE 《Biodegradation》2001,12(6):455-463
Several types of biodegradation experiments with benzene, toluene, or p-xylene show accumulation of intermediates by Pseudomonas putida F1. Under aerobic conditions, the major intermediates identified for benzene, toluene, and p-xylene are catechol, 3-methylcatechol, and 3,6-dimethylcatechol, respectively. Oxidations of catechol and 3-methylcatechol are linked to biomass synthesis. When oxygen is limited in the system, phenol (from benzene) and m-cresol and o-cresol (from toluene) accumulate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号