首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

2.
柠檬酸铁对过亚硝酸根硝化酪氨酸反应的影响   总被引:4,自引:0,他引:4  
由一氧化氮和超氧阴离子迅速反应生成的过亚硝酸根(ONOO-)是一种强细胞毒性物质. 使含酚基物质如酪氨酸等硝化,是过亚硝酸根损伤生物系统的重要途径之一. 研究了柠檬酸铁和草酸铁对过亚硝酸根硝化酪氨酸反应的影响.在生理pH条件下柠檬酸铁和草酸铁对硝化反应无影响. 在弱酸性条件下柠檬酸铁和草酸铁可催化硝化反应. 对pH影响铁配合物在硝化反应中的催化活性的原因进行了讨论.  相似文献   

3.
4.
Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic. Both genes contained 14 introns. The sequences of the isoforms revealed that they were both bicupins that unexpectedly shared the greatest similarity to microbial bicupin oxalate decarboxylases rather than monocupin plant oxalate oxidases (also known as germins). We have shown that both fungal isoforms, one of which was heterologously expressed in Escherichia coli, are indeed oxalate oxidases that possess ≤0.2% oxalate decarboxylase activity and that the organism is capable of rapidly degrading exogenously supplied oxalate. They are therefore the first bicupin oxalate oxidases to have been described. Heterologous expression of active enzyme was dependent on the addition of manganese salts to the growth medium. Molecular modeling provides new and independent evidence for the identity of the catalytic site and the key amino acid involved in defining the reaction specificities of oxalate oxidases and oxalate decarboxylases.  相似文献   

5.
Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic. Both genes contained 14 introns. The sequences of the isoforms revealed that they were both bicupins that unexpectedly shared the greatest similarity to microbial bicupin oxalate decarboxylases rather than monocupin plant oxalate oxidases (also known as germins). We have shown that both fungal isoforms, one of which was heterologously expressed in Escherichia coli, are indeed oxalate oxidases that possess < or =0.2% oxalate decarboxylase activity and that the organism is capable of rapidly degrading exogenously supplied oxalate. They are therefore the first bicupin oxalate oxidases to have been described. Heterologous expression of active enzyme was dependent on the addition of manganese salts to the growth medium. Molecular modeling provides new and independent evidence for the identity of the catalytic site and the key amino acid involved in defining the reaction specificities of oxalate oxidases and oxalate decarboxylases.  相似文献   

6.
Foster J  Kim HU  Nakata PA  Browse J 《The Plant cell》2012,24(3):1217-1229
Oxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA synthetase (EC 6.2.1.8) catalyzes the first step, but no gene encoding this function has been found. Here, we identify acyl-activating enzyme3 (AAE3; At3g48990) from Arabidopsis as a gene encoding oxalyl-CoA synthetase. Recombinant AAE3 protein has high activity against oxalate, with K(m) = 149.0 ± 12.7 μM and V(max) = 11.4 ± 1.0 μmol/min/mg protein, but no detectable activity against other organic acids tested. Allelic aae3 mutants lacked oxalyl-CoA synthetase activity and were unable to degrade oxalate into CO(2). Seeds of mutants accumulated oxalate to levels threefold higher than the wild type, resulting in the formation of oxalate crystals. Crystal formation was associated with seed coat defects and substantially reduced germination of mutant seeds. Leaves of mutants were damaged by exogenous oxalate and more susceptible than the wild type to infection by the fungus Sclerotinia sclerotiorum, which produces oxalate as a phytotoxin to aid infection. Our results demonstrate that, in Arabidopsis, oxalyl-CoA synthetase encoded by AAE3 is required for oxalate degradation, for normal seed development, and for defense against an oxalate-producing fungal pathogen.  相似文献   

7.
In order to establish a standard procedure for the spectrophotometric determination of urinary and plasma oxalate with oxalate oxidase (Laker, M.F., et al. (1980) Clin. Chem. 26, 827-830; Sugiura, M., et al. (1980) Clin. Chim. Acta 105, 393-399) and to define the limitations of the method, the procedures and reactions involved in the assay have been examined. Among the chromogenic hydrogen donors for peroxidase tested, a combination of 3-methyl-2-benzothiazolinone hydrazone (MBTH) and sodium N-sulfopropylaniline (HALPS) was found to be best for the oxalate determination under the conditions used. Urine contained substance(s) which were inhibitory to the measurement of hydrogen peroxide by the peroxidase-catalyzed oxidative condensation of MBTH and HALPS, but they were largely removed by charcoal treatment at pH 5.6 without significant loss of oxalate. Deproteinization of plasma was carried out by ultrafiltration through a membrane cone (Centriflo CF-25) at neutral pH. The plasma oxalate ultrafiltrability under the conditions employed was calculated to be approximately 95%. A standard assay system for oxalate in these urine and plasma samples was then set up based on a series of studies on the reactions involved in the assay. In the case of normal plasma, however, the absorbance change was very small due to the low concentration of oxalate, and in addition, pretreatment of plasma with excess oxalate decarboxylase followed by the ultrafiltration and oxalate determination did not abolish completely the oxalate oxidase-dependent absorbance increase. It was concluded that the enzymic method was useful for the assay of urinary oxalate and in detecting elevated levels of plasma oxalate such as those in hemodialysis patients but was not sensitive enough to determine accurately the normal or decreased level of oxalate in plasma. The apparent concentration of oxalate in normal human plasma was measured in this work as 3.5 +/- 0.8 microM (mean +/- S.D., n = 8), and this result was interpreted to mean that the concentration of plasma oxalate was less than approximately 3.5 microM, as estimated by the present method.  相似文献   

8.
It has been proposed that various urinary proteins interact specifically with different calcium oxalate hydromorphs and these interactions have important implications regarding the understanding of the onset and progress of kidney stone disease. Calcium oxalate monohydrate and dihydrate crystals were grown and characterised thoroughly to establish sample purity. These crystals were then incubated in artificial urine samples containing isolated urinary macromolecules. Crystal growth was prevented by saturating the incubation mix with calcium oxalate, and this was confirmed through electron microscopy and calcium measurements of the incubation mix. The surface interactions between the different calcium oxalate hydrates and urinary proteins were investigated by the use of Western blots and immunoassays. The same proteins, notably albumin, Tamm-Horsfall protein, osteopontin and prothrombin fragment 1, associated with both hydrates. There was a trend for more protein to associate with calcium oxalate dihydrate, and greater quantities of different proteins associated with both hydrates when Tamm-Horsfall protein was removed from the incubation mix. There is no evidence from this study to indicate that particular proteins interact with specific calcium oxalate hydrates, which in turn suggests that these protein-mineral interactions are likely to be mediated through non-specific charge interactions.  相似文献   

9.
Although aluminum (AI)-activated secretion of oxalate has been considered to be an Important AI-exclusion mechanism,whether it is a general response in oxalate accumulators and related to oxalate content in roots are still not clear.Here,we examined the oxalate secretion and oxalate content in some oxalate accumulators,and investigated the role of oxalate secretion in AI resistance.When oxalate content in amaranth roots was decreased by about 50% with the increased ratio of NH4 -N to NO3——N in nutrient solution,the amount of AI-activated oxalate secretion still remained constant.There was no relationship between the content of the water soluble oxalate in four species of oxalate accumulators and the amount of the AI-activated oxalate secretion in roots.Furthermore,oxalate secretion is poorly associated with AI resistance among these species.Based on the above results,we concluded that although all of the oxalate accumulators tested could secrete oxalate rapidly,the density of anion channels in plasma membrane may play a more important role in AI-activated oxalate secretion.Key words: aluminum toxicity; Amaranthus; anion channel; oxalate accumulator; oxalate secretion.  相似文献   

10.
Hyperoxaluria is one of the major risk factors for the formation of urinary calcium oxalate stones. Calcium oxalate crystals and their deposition have been implicated in inducing renal tubular damage. Lipoic acid (LA) and eicosapentaenoic acid (EPA) have been shown to ameliorate the changes associated with hyperoxaluria. This prompted us to investigate the nephroprotectant role of EPA-LA, a new derivative, in vivo in hyperoxaluric rats. Elevation in the levels of calcium, oxalate and phosphorus, the stone-forming constituents, were observed in calculogenic rats as a manifestation of crystal deposition.Tubular damage to the renal tissue was assessed byassaying the excretion of marker enzymes in the urine. Damage to the tubules was indicated by increased excretion of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), gamma-glutamyl transferase (gamma-GT), beta-Glucuronidase (beta-GLU) and N-Acetyl beta-D glucosaminidase (NAG). Fibrinolytic activity was found to be reduced. Administration of EPA, LA and EPA-LA reduced the tubular damage and decreased the markers of crystal deposition markedly, which was substantiated by the reduction in weight of bladder stone formed. Our results highlight that EPA-LA is the most effective drug in inhibiting stone formation and mitigating renal damage caused by oxalate toxicity, thus confirming it as a nephroprotectant. Further work in this direction is warranted to establish the therapeutic effectiveness of this new derivative.  相似文献   

11.
The ionophore A23187 is a potent inhibitor of oxalate supported calcium uptake if added before uptake is initiated by ATP and is a much weaker inhibitor of uptake once uptake has been initiated. This observation is shown to be due to a failure of oxalate to capture the transported calcium at the beginning of uptake because the rate of calcium oxalate crystallization is initially slow, thereby allowing the ionophore to release the accumulated calcium. This hypothesis is supported by the observation that calcium oxalate crystallization shows a lag phase which is absent when calcium oxalate seeds are in the reaction system. Once calcium uptake has progressed, calcium oxalate seeds are present in the sarcoplasmic reticulum and calcium oxalate crystallization proceeds sufficiently rapidly that the ionophore cannot compete successfully for calcium. That A23187 and oxalate compete for intravesicular ionic calcium is shown by the stimulation which each produces in ATPase activity and by the dependence of ionophore activity on oxalate concentration.The failure of calcium oxalate crystallization to reach equilibrium during the early phase of calcium uptake caused us to examine whether at any time during calcium uptake, crystallization reaches equilibrium. Skeletal sarcoplasmic reticulum accumulated calcium at such a high rate that oxalate, in concentrations up to 20mM, was unable to clamp intravesicular calcium at equilibrium values. The lower rate of calcium accumulation by cardiac sarcoplasmic reticulum and/or perhaps its greater permeability to oxalate apparently allows intravesicular calcium to be clamped by oxalate.  相似文献   

12.
Pandoraea sp. OXJ-11 has been shown to produce an oxalate decarboxylase. The enzyme could be induced by increasing the oxalate in the medium. An increasing concentration of yeast extract was able to stimulate the cell growth but could not increase the specific oxalate decarboxylase activity. The oxalate decarboxylase was produced maximally at 25-35 degrees C and pH 4.0-9.0, favoring its potential application in protection of host plants from oxalate-producing phytopathogens. The influence of glucose on the induction of oxalate decarboxylase by oxalate was examined, and it was found that glucose inhibited the production of the oxalate decarboxylase. Resistance results showed that Pandoraea sp. OXJ-11 was capable of suppressing Sclerotinia sclerotiorum infection on detached leaflets of Brassica napus plants.  相似文献   

13.
Oxalate rich stones are the most common among the various stones. Oxalate binding protein plays a vital role in the transport of oxalate. Nuclear pore complex (NPC) contains a protein of molecular weight 62 kDa and it has maximum oxalate binding activity. The physiological significance of the presence of oxalate binding protein in the NPC is not well understood. In order to study its function, the expression of this protein during oxalate stress condition and the morphological changes on oxalate exposure to synchronized VERO cells have been determined. VERO cells were synchronized at different stages of cell cycle using cell cycle blockers and expression of the NPC p62 was assessed using enzyme linked immunosorbent assay (ELISA) technique with p62 antibody (MAb 414). Expression of NPC p62 was more pronounced in 1.0 mM oxalate concentration in mitotic phase than in S phase, suggesting cell cycle dependency. During oxalate exposure there is cell aggregation and complete degeneration of cell morphology occurs, which in turn lead to the expression of certain genes, including the NPC oxalate binding protein p62. Thus, oxalate induces degeneration of cells (may be due to the lipid peroxidation) and leads to the expression of NPC oxalate binding protein and the expression is of cell cycle dependent manner.  相似文献   

14.
Degradation of oxalate in rats implanted with immobilized oxalate oxidase   总被引:1,自引:0,他引:1  
K G Raghavan  U Tarachand 《FEBS letters》1986,195(1-2):101-105
Accumulation of oxalate leads to hyperoxaluria and calcium oxalate nephrolithiasis in man. Since oxalate is a metabolic end product in mammals, the feasibility of its enzymic degradation has been tested in vivo in rats by administering exogenous oxalate oxidase. Oxalate oxidase, isolated from banana fruit peels, in its native form was found to be non-active at the physiological pH of the recipient animal. However, its functional viability in the recipient animal was ensured by its prior binding with ethylenemaleic anhydride, thus shifting its pH activity curve towards the alkaline range. Rats implanted with dialysis membrane capsules containing such immobilized oxalate oxidase in their peritoneal cavities effectively metabolized intraperitoneally injected [14C]oxalate as well as its precursor [14C]glyoxalate. The implantation of capsules containing coentrapped multienzyme preparations of oxalate oxidase, catalase and peroxidase led to a further degradation of administered [14C]oxalate in rats.  相似文献   

15.
朱广龙  马茵  韩蕾  霍张丽  魏学智 《生态学报》2014,34(22):6429-6439
晶体是植物体内产生的一种具有特殊形态结构与生理功能的代谢物,其分布广泛,已在500多种植物中发现有晶体的存在。晶体形态多样,有针晶、柱晶、棱晶、砂晶、簇晶等;类型丰富,有草酸钙晶体、钟乳体、硅质体、硫酸钙晶体及其它类型的晶体;功能特殊,具有钙调节、植物保护和防御、重金属解毒、离子平衡、缓解逆境胁迫及其它多种生物功能。晶体的形成涉及钙离子的体外吸收和体内转运,草酸的生物合成,以及钙离子和草酸的耦合过程;晶体的生长发育涉及液泡、晶异细胞的调控及与其它细胞结构的相互协作。对晶体的研究进行综述,以期为晶体的进一步研究提供基础资料。  相似文献   

16.
Oxalate oxidase, and H2O2-generating enzyme, has been characterized from several plants, and is widely used for clinical detection of oxalate. Using a germin-like oxalate oxidase from barley leaves, we have developed and optimized novel methods for measuring oxalate oxidase activity. As oxalate oxidase is SDS-tolerant, its activity can be detected directly in SDS-PAGE gels in the presence of ethanol. This ethanol-dependent method is a hundred times more sensitive than the current methods. Furthermore, ethanol also improves the sensitivity of oxalate oxidase assays performed in solution. We found at least a 10-fold increase in sensitivity in comparison to a current method. The assay in solution is, in addition, useful for detection of oxalate. This elevation in sensitivity may be due to the immobilization of the enzyme in protein precipitates as a result of the treatment with ethanol.  相似文献   

17.
The Bacillus subtilis oxalate decarboxylase (EC ), YvrK, converts oxalate to formate and CO(2). YvrK and the related hypothetical proteins YoaN and YxaG from B. subtilis have been successfully overexpressed in Escherichia coli. Recombinant YvrK and YoaN were found to be soluble enzymes with oxalate decarboxylase activity only when expressed in the presence of manganese salts. No enzyme activity has yet been detected for YxaG, which was expressed as a soluble protein without the requirement for manganese salts. YvrK and YoaN were found to catalyze minor side reactions: oxalate oxidation to produce H(2)O(2); and oxalate-dependent, H(2)O(2)-independent dye oxidations. The oxalate decarboxylase activity of purified YvrK was O(2)-dependent. YvrK was found to contain between 0.86 and 1.14 atoms of manganese/subunit. EPR spectroscopy showed that the metal ion was predominantly but not exclusively in the Mn(II) oxidation state. The hyperfine coupling constant (A = 9.5 millitesla) of the main g = 2 signal was consistent with oxygen and nitrogen ligands with hexacoordinate geometry. The structure of YvrK was modeled on the basis of homology with oxalate oxidase, canavalin, and phaseolin, and its hexameric oligomerization was predicted by analogy with proglycinin and homogentisate 1,2-dioxygenase. Although YvrK possesses two potential active sites, only one could be fully occupied by manganese. The possibility that the C-terminal domain active site has no manganese bound and is buried in an intersubunit interface within the hexameric enzyme is discussed. A mechanism for oxalate decarboxylation is proposed, in which both Mn(II) and O(2) are cofactors that act together as a two-electron sink during catalysis.  相似文献   

18.
Oxalate patinas on ancient monuments: the biological hypothesis   总被引:1,自引:0,他引:1  
Summary Whewellite and weddellite, calcium oxalate monohydrate and dihydrate respectively, have been found in the form of thin surface layers on limestone and marble monuments and artifacts of various historical periods at different sites. Experimental results indicate that the formation of both minerals must be attributed essentially to the action of oxalic acid secreted by microorganisms (lichens) which live and proliferate on the stone. Oxalic acid attacks the calcium carbonate of the stone surface giving rise to the precipitation of calcium oxalate.  相似文献   

19.
Oxalate, a metabolic end product, is an important factor in the pathogenesis of renal stone disease. Oxalate exposure to renal epithelial cells results in re-initiation of the DNA synthesis, altered gene expression, and apoptosis, but the signaling pathways involved in these diverse effects have not been evaluated. The effects of oxalate on mitogen- and stress-activated protein kinase signaling pathways were studied in LLC-PK1 cells. Exposure to oxalate (1 mM) rapidly stimulated robust phosphorylation and activation of p38 MAPK. Oxalate exposure also induced modest activation of JNK, as monitored by phosphorylation of c-Jun. In contrast, oxalate exposure had no effect on phosphorylation and enzyme activity of p42/44 MAPK. We also show that specific inhibition of p38 MAPK by 4(4-(fluorophenyl)-2-(4-methylsulfonylphenyl)-5-(4-pyridyl)imidazole (SB203580) or by overexpression of a kinase-dead dominant negative mutant of p38 MAPK abolishes oxalate induced re-initiation of DNA synthesis in LLC-PK1 cells. The inhibition is dose-dependent and correlates with in situ activity of native p38 MAP kinase, determined as MAPK-activated protein kinase-2 activity in cell extracts. Thus, this study not only provides the first demonstration of selective activation of p38 MAPK and JNK signaling pathways by oxalate but also suggests that p38 MAPK activity is essential for the effects of oxalate on re-initiation of DNA synthesis.  相似文献   

20.
Bacillus subtilis YvrK is an acid-induced oxalate decarboxylase   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus subtilis has been shown to express a cytosolic oxalate decarboxylase (EC 4.1.1.2). The enzyme was induced in acidic growth media, particularly at pH 5.0, but not by oxalate. The enzyme was purified, and N-terminal sequencing identified the protein to be encoded by yvrK. The role of the first oxalate decarboxylase to be identified in a prokaryote is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号