首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alternating current (ACt) polarographic behavior of lansoprazole (LNS) and omeprazole (OMP) was studied in Britton Robinson buffers (BRb) over the pH range 4.1–11.5. In BRb of pH 9.6 and 10.5, well-defined ACt peaks were obtained for both LNS and OMP, respectively. The current–concentration plots were rectilinear over the ranges of 0.4–20 µg mL− 1 and 0.2–10 µg mL− 1 for LNS and OMP respectively. The minimum detection limits (S/N = 2) were 0.02 µg mL− 1 (5.4 × 10− 8 M) and 0.01 µg mL− 1 (2.9 × 10− 8 M) for LNS and OMP, respectively. The proposed method was successfully applied to the analysis of the two drugs in their commercial capsules. The average percent recoveries were favorably compared to those obtained by reference methods. Co-administered drugs such as naproxen and methotrexate did not interfere with the proposed method. The proposed method was further extended to the in-vitro determination of the lansoprazole in spiked plasma, the percentage recoveries was 98.47 ± 1.29 (n = 4). The pathway for the electrode reaction for both drugs involved reduction of the sulphonyl group into the corresponding thiol group at the Dropping Mercury Electrode. The advantages of the method were time saving and more sensitive than the other published voltammetric method. Yet The present study is the first report on the use of alterating current polarography (ACt) in this respect.  相似文献   

2.
Cyclic voltammetry at potential range − 1.1 to 0.5 V from aqueous buffer solution (pH 7) containing CoCl2 produced a well defined cobalt oxide (CoOx) nanoparticles deposited on the surface of glassy carbon electrode. The morphology of the modified surface and cobalt oxide formation was examined with SEM and cyclic voltammetry techniques. Hemoglobin (Hb) was successfully immobilized in cobalt-oxide nanoparticles modified glassy carbon electrode. Immobilization of hemoglobin onto cobalt oxide nanoparticles have been investigated by cyclic voltammetry and UV–visible spectroscopy. The entrapped protein can take direct electron transfer in cobalt-oxide film. A pair of well defined, quasi-reversible cyclic voltammetric peaks at about − 0.08 V vs. SCE (pH 7), characteristic of heme redox couple (Fe(III)/Fe(II)) of hemoglobin, and the response showed surface controlled electrode process. The dependence of formal potential (E0′) on the solution pH (56 mV pH− 1) indicated that the direct electron transfer reaction of hemoglobin was a one-electron transfer coupled with a one proton transfer reaction process. The average surface coverage of Hb immobilized on the cobalt oxide nanoparticles was about 5.2536 × 10− 11 mol cm− 2, indicating high loading ability of nanoparticles for hemoglobin entrapment. The heterogeneous electron transfer rate constant (ks) was 1.43 s− 1, indicating great of facilitation of the electron transfer between Hb and electrodeposited cobalt oxide nanoparticles. Modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide and oxygen. The Michaels–Menten constant Km of 0.38 mM, indicating that the Hb immobilized onto cobalt oxide film retained its peroxidases activity. The biosensor exhibited a fast amperometric response < 5 s, a linear response over a wide concentration range 5 μM to 700 μM and a low detection limit 0.5 μM. According to the direct electron transfer property and enhanced activity of Hb in cobalt oxide film, a third generation reagentless biosensor without using any electron transfer mediator or specific reagent can be constructed for determination of hydrogen peroxide in anaerobic solutions.  相似文献   

3.
Li L  She H  Yue SJ  Qin XQ  Guan CX  Liu HJ  Luo ZQ 《Regulatory peptides》2007,140(3):117-124
We previously reported that vasoactive intestinal peptide (VIP) promoted synthesis of phosphatidylcholine (PC) in alveolar type II (ATII) cells. But the intracellular mechanism for this effect was unknown. In this work, we investigated the intracellular signal transduction pathway for VIP promoted synthesis of PC, the major lipid component of pulmonary surfactant (PS), by using an antagonist of VIP receptors, inhibitor of protein kinase C (PKC) and antisense oligonucleotides (AS-ODN) for c-fos oncogene. Our results showed that: ① [D-P-Cl-Phe(6)-Leu(17)]-VIP (10− 6 mol/l), an antagonist of VIP receptors, could decrease the quantity of [3H] choline incorporation, microsomal choline-phosphate cytidylyltransferase (CCT) mRNA expression and CCT activity induced by VIP (10− 8 mol/l) in cultured lung explants to the control levels; ② VIP (10− 8 mol/l) upregulated c-Fos protein expression in ATII cells. AS-ODN for c-fos oncogene (9 × 10− 6 mol/l) could block the elevation of [3H] choline incorporation, microsomal CCT mRNA expression and CCT activity induced by VIP in cultured lung explants and in ATII cells; ③ H7 (10− 5 mol/l), a PKC inhibitor could also reduce VIP induced [3H] choline incorporation, microsomal CCT mRNA expression and CCT activity in cultured lung explants and in ATII cells. These results demonstrated that VIP receptors, PKC and c-Fos protein played important roles in the signaling pathway through which VIP promoted the synthesis of PC.  相似文献   

4.
Both prostaglandins (PGs) and nitric oxide (NO) have cytoprotective and hyperemic effects in the stomach. However, the effect of NO on PG synthesis in gastric mucosal cells is unclear. We examined whether sodium nitroprusside (SNP), a releaser of NO, stimulates PG synthesis in cultured rabbit gastric mucus-producing cells. These cells did not release NO themselves. Co-incubation with SNP (2 × 10−4, 5 × 10−4, 10−3 M) increased PGE2 synthesis, and SNP (10−3 M) increased PGI2 synthesis in these cells. Hemoglobin, a scavenger of NO, (10−5 M) eliminated the increase in PGE2 synthesis by SNP, but methylene blue, an inhibitor of soluble guanylate cyclase, (5 × 10−5 M) did not affect the increase in PGE2 synthesis by SNP. 8-bromo guanosine 3′ : 5′-cyclic monophosphate (8-bromo cGMP), a cGMP analogue, (10−6, 10−5, 10−4, 10−3 M) did not affect PGE2 synthesis. These findings suggest that NO increased PGE2 and PGI2 synthesis via a cGMP-independent pathway in cultured rabbit gastric cells.  相似文献   

5.
Guar gum has been modified by graft copolymerization with acrylic acid in aqueous medium using vanadium (V)–mercaptosuccinic acid redox system. The optimum reaction conditions affording maximum grafting ratio, efficiency, add on and conversion have been determined. The grafting parameters have been found to increase with increase in vanadium (V) concentration upto 1.0 × 10−2 mol dm−3, but these parameters decrease on further increasing the vanadium (V) concentration. On increasing the mercaptosuccinic acid concentration from 1.0 × 10−2 to 4.0 × 10−2 mol dm−3 grafting ratio, efficiency and add on increase up to 2.0 × 10−2 mol dm−3 but decrease with further increase in mercaptosuccinic acid concentration. On varying the acrylic acid concentration from 5.0 × 10−2 to 30.0 × 10−2 mol dm−3, maximum grafting ratio, efficiency and add on have been obtained at 20.0 × 10−2 mol dm−3. The grafting ratio, add on and conversion increase, on increasing the H+ ion concentration from 1.5 × 10−1 to 6.0 × 10−1 mol dm−3. On increasing the guar gum concentration the grafting parameters increase. The grafting ratio, add on and conversion have been found to increase with time period while efficiency started decreasing after 120 min. It has been observed that %G increases on increasing the temperature up to 35 °C. The graft copolymer has been characterized by IR spectroscopy and thermogravimetric analysis.  相似文献   

6.
Graft copolymer of k-carrageenan and N,N-dimethylacrylamide has been synthesized by free radical polymerization using peroxymonosulphate/glycolic acid redox pair in an inert atmosphere. The grafting parameters i.e. grafting ratio, add on and efficiency decrease with increase in concentration of k-carrageenan from 0.6 to 1.4 g dm−3 and hydrogen ion from 3 × 10−3 to 7 × 10−3 mol dm−3, but these grafting parameters increase with increase in concentration of N,N-dimethylacrylamide from 16 × 10−2 to 32 × 10−2 mol dm−3, and peroxymonosulphate from 0.8 × 10−2 to 2.4 × 10−2 mol dm−3. The metal ion sorption, swelling behaviour and flocculation properties have been studied. The intrinsic viscosity of pure and grafted samples has been measured by using Ubbelohde capillary viscometer. Flocculation capability of k-carrageenan and k-carrageenan-g-N,N-dimethylacrylamide for both coking and non-coking coals has been studied for the treatment of coal mine waste water. The graft copolymer has been characterized by Infrared (IR) spectroscopy and thermogravimetric analysis.  相似文献   

7.
It is well accepted that estradiol (E2) plays an important role in the genesis and evolution of breast cancer. Quantitative evaluation indicates that in human breast tumor, estrone sulfate (E1S) ‘via sulfatase’ is a much more likely precursor for E2 than is androstenedione ‘via aromatase’. In previous studies, it was demonstrated that in isolated MCF-7 and T-47D breast cancer cell lines, estradiol can block estrone sulfatase activity. In the present study, the effect of E2 was explored using total normal and cancerous breast tissues. This study was carried out with post-menopausal patients with breast cancer. None of the patients had a history of endocrine, metabolic or hepatic diseases or had received treatment in the previous 2 months. Each patient received local anaesthetic (lidocaine 1%) and two regions of the mammary tissue were selected: (A) the tumoral tissue and (B) the distant zone (glandular tissue) which was considered as normal. Samples were placed in liquid nitrogen and stored at –80 °C until enzyme activity analysis. Breast cancer histotypes were ductal and post-menopausal stages were T2. Homogenates of tumoral or normal breast tissues (45–75 mg) were incubated in 20 mM Tris–HCl, pH 7.2 with physiological concentrations of [3H]-E1S (5 × 10−9 M) alone or in the presence of E2 (5 × 10−5 to 5 × 10−7 M) during 30 min or 3 h. E1S, E1 and E2 were characterized by thin layer chromatography and quantified using the corresponding standard. The sulfatase activity is significantly more intense with the breast cancer tissue than normal tissue, since the concentration of E1 was 3.20 ± 0.15 and 0.42 ± 0.07 pmol/mg protein, respectively after 30 min incubation. The values were 27.8 ± 1.8 and 3.5 ± 0.21 pmol/mg protein, respectively after 3 h incubation. Estradiol at the concentration of 5 × 10−7 M inhibits this conversion by 33% and 31% in cancerous and normal breast tissues, respectively and by 53% and 88% at the concentration of 5 × 10−5 M after 30 min incubation. The values were 24% and 18% for 5 × 10−7 M and 49% and 42% for 5 × 10−5 M, respectively after 3 h incubation. It was observed that [3H]-E1S is only converted to [3H]-E1 and not to [3H]-E2 in normal or cancerous breast tissues, which suggests a low or no 17β-hydroxysteroid dehydrogenase (17β-HSD) Type 1 reductive activity in these experimental conditions. In conclusion, estradiol is a strong anti-sulfatase agent in cancerous and normal breast tissues. This data can open attractive perspectives in clinical trials using this hormone.  相似文献   

8.
Thin-film myoglobin molecularly imprinted polymers have been fabricated using a micro-contact approach. By initially selecting the cross-linker on the basis of it having a minimal recognition for the template and using this as a starting point for functional monomer selection, we have produced myoglobin imprinted polymers with exceptionally high selectivities.

The affinity of the polymers, for myoglobin, when prepared with a variety of different cross-linkers and no functional monomer was evaluated. Of these, tetraethylene glycol dimethacrylate (TEGDMA) exhibited the lowest affinity for the template species. Methyl methacrylate (MMA) was chosen as the functional monomer as when it was used in conjunction with TEGDMA, it exhibited maximum selectivity for the template compared to polymers made with other functional monomers.

With a MMA to TEGDMA ratio of 1 to 3, the myoglobin molecularly imprinted polymer adsorbed 15.03 ± 0.89 × 10−11 mole/cm2 of template from a 5.68 × 10−7 M myoglobin solution, compared to 2.58 ± 0.02 × 10−11 mole/cm2 for a polymer of similar composition, but formed in the absence of a template. Various washing conditions, using alkaline media to remove the template, were investigated. An extraction solvent comprising 2 wt.% SDS and 0.6 wt.% NaOH used at 80 °C for 30 min was shown to give the highest imprinting factor i.e. 5.83 with 72.82% myoglobin removal.

The saturation kinetics of template binding to the thin-film MIP were examined and found to display a simple two-phase profile typical of non-cooperative binding. A Scatchard binding plot showed the dissociation constant (Kd) for the specific binding phase to be 3.4 × 10−7 M and the binding site capacity to be 7.24 × 10−11 mole/cm2. For the non-specific binding phase, Kd was found to be 1.355 × 10−5 M and the binding site capacity was determined as 9.62 × 10−10 mole/cm2.

Selectivity experiments were carried out in both single protein and binary protein systems all using a total protein concentration of 5.68 × 10−7 M. The molar ratio of adsorbed myoglobin to IgG, HSA and hemoglobin was found to 115.5, 230.9 and 2.5, respectively. While, in binary competition systems, myoglobin selectivity to IgG, HSA and hemoglobin was, respectively, 94.18, 98.21 and 61.09%. Rebinding in natural biological matrices, i.e. human serum or urine, showed the imprinted films to have significantly greater uptake than non-imprinted films. Re-binding in undiluted urine was found to be a facile process, with the imprinting factor, i.e. the ratio of MIP to NIP binding, being determined as 37.4.  相似文献   


9.
A simple and effective strategy for fabrication of hydrogen peroxide (H2O2) biosensor has been developed by entrapping horseradish peroxidase (HRP) in chitosan/silica sol–gel hybrid membranes (CSHMs) doped with potassium ferricyanide (K3Fe(CN)6) and gold nanoparticles (GNPs) on platinum electrode surface. The hybrid membranes are prepared by cross-linking chitosan (CS) with 3-aminopropyltriethoxysilane (APTES), while the presence of GNPs improved the conductivity of CSHMs, and the Fe(CN)63−/4− was used as a mediator to transfer electrons between the electrode and HRP due to its excellent electrochemistry activity. UV–Vis absorption spectroscopy was employed to characterize the different components in the CSHMs and their interaction. The parameters influencing the performance of the resulting biosensor were optimized and the characteristic of the resulting biosensor was characterized by cyclic voltammetry and chronoamperometry. Linear calibration for hydrogen peroxide was obtained in the range of 3.5 × 10− 6 to 1.4 × 10− 3 M under the optimized conditions with the detection limit (S/N = 3) of 8.0 × 10− 7 M. The apparent Michaelis–Menten constant of the enzyme electrode was 0.93 mM. The enzyme electrode retained about 78% of its response sensitivity after 30 days. The system was applied for the determination of the samples, and the results obtained were satisfactory.  相似文献   

10.
Differential UV spectroscopy and thermal denaturation were used to study the Mg2+ ion effect on the conformational equilibrium in poly A · 2 poly U (A2U) and poly A · poly U (AU) solutions at low (0.01 M Na+) and high (0.1 M Na+) ionic strengths. Four complete phase diagrams were obtained for Mg2+–polynucleotide complexes in ranges of temperatures 20–96 °C and concentrations (10−5–10−2) M Mg2+. Three of them have a ‘critical’ point at which the type of the conformational transition changes. The value of the ‘critical’ concentration ([Mgt2+]cr=(4.5±1.0)×10−5 M) is nearly independent of the initial conformation of polynucleotides (AU, A2U) and of Na+ contents in the solution. Such a value is observed for Ni2+ ions too. The phase diagram of the (A2U+Mg2+) complex with 0.01 M Na+ has no ‘critical’ point: temperatures of (3→2) and (2→1) transitions increase in the whole Mg2+ range. In (AU+Mg2+) phase diagram at 0.01 M Na+ the temperature interval in which triple helices are formed and destroyed is several times larger than at 0.1 M Na+. Using the ligand theory, a qualitative thermodynamic analysis of the phase diagrams was performed.  相似文献   

11.
Amperometric choline biosensors were fabricated by the covalent immobilization of an enzyme of choline oxidase (ChO) and a bi-enzyme of ChO/horseradish peroxidase (ChO/HRP) onto poly-5,2′:5′,2″-terthiophene-3′-carboxylic acid (poly-TTCA) modified electrodes (CPMEs). A sensor modified with ChO utilized the oxidation process of enzymatically generated H2O2 in a choline solution at +0.6 V. The other one modified with ChO/HRP utilized the reduction process of H2O2 in a choline solution at −0.2 V. Experimental parameters affecting the sensitivity of sensors, such as pH, applied potential, and temperature were optimized. A performance comparison of two sensors showed that one based on ChO/HRP/CPME had a linear range from 1.0×10−6 to 8.0×10−5 M and the other based on ChO/CPME from 1.0×10−6 to 5.0×10−5 M. The detection limits for choline employing ChO/HRP/CPME and ChO/CPME were determined to be about 1.0×10−7 and 4.0×10−7 M, respectively. The response time of sensors was less than 5 s. Sensors showed good selectivity to interfering species. The long-term storage stability of the sensor based on ChO/HRP/CPME was longer than that based on ChO/CPME.  相似文献   

12.
Li D  Li NS  Chen QQ  Guo R  Xu PS  Deng HW  Li YJ 《Regulatory peptides》2008,147(1-3):4-8
Previous studies have demonstrated that endogenous calcitonin gene-related peptide (CGRP) plays an important role in mediation of ischemic preconditioning. In the present study, we tested whether CGRP is also involved in mediation of the protective effects of postconditioning in isolated rat hearts. Sixty minutes of left coronary artery occlusion and followed by 60 min of reperfusion caused a significant decrease in cardiac function and a significant increase in creatine kinase (CK) release and infarct size. Postconditioning with three cycles of 1-min ischemia and 1-min reperfusion produced a marked improvement of cardiac function and decreased CK release and infarct size, concomitantly with an increase in the release of CGRP release in coronary effluent. However, the cardioprotection afforded by postconditioning was abolished by CGRP 8-37 (10− 7 M), a selective CGRP receptor antagonist, or pretreatment with capsaicin (50 mg/kg, s.c.), which depletes transmitters in sensory nerves. Exogenous CGRP (5 × 10− 9 M) administration of CGRP reappeared postconditioning-like cardioprotection in the rats pretreated with capsaicin. These results suggest that the protective effects of ischemic postconditioning are related to stimulation of endogenous CGRP release in rat hearts.  相似文献   

13.
The porcine pancrease lipase was immobilized by entrapment in the beads of K-carrageenan and cured by treatment with polyethyleneimine (PEI) in the phosphate buffer. The retention of hydrolytic activity of lipase and compressive strength of the beads were examined. The activity of free and immobilized lipase was assessed by using olive oil as the substrate. The immobilized enzyme exhibited a little shift towards acidic pH for its optimal activity and retained 50% of its activity after 5 cycles. When the enzyme concentration was kept constant and substrate concentration was varied the Km and Vmax were observed to be 0.18 × 10−2 and 0.10, and 0.10 × 10−2 and 0.09 respectively, for free and for entrapped enzymes. When the substrate concentration was kept constant and enzyme concentration was varied, the values of Km and Vmax were observed to be 0.19 × 10−7 and 0.41, and 0.18 × 10−7 and 0.41 for free and entrapped enzymes. Though this indicates that there is no conformational change during immobilization, it also shows that the reaction velocity depends on the concentration. Immobilized enzyme showed improved thermal and storage stability. Hydrolysis of olive oil in organic–aqueous two-phase system using fixed bed reactor was carried out and conditions were optimized. The enzyme in reactor retained 30% of its initial activity after 480 min (12 cycles).  相似文献   

14.
C. Görlach  M. Wahl 《Peptides》1996,17(8):1373-1378
Ring segments of rat middle cerebral artery (MCA) were prepared for measurement of isometric force and precontracted with 10−4 M uridine triphosphate (UTP). Concentration-effect curves (CEC) were constructed for bradykinin (BK, 10−8–10−5 M) in segments with functionally intect (E+) or denuded (E−) endothelium. E− segments did not dilate to BK. The BK receptor was characterized by application of specific B1 or B2 antagonists [des-Arg9-Leu8] BK (10−5 M) and [ -Arg0-Hyp3-Thi5- -Tic7-Oic8] BK (HOE140,3 × 10−7 M), respectively, or B1 agonist [des-Arg9] BK (10−8–10−4 M). Involvement of nitric oxide (NO) was tested with NG-nitro- -arginine (LNNA, 10−4 M). BK induced concentration-dependent relaxation with a maximal effect (Emax) of 40.86 ± 1.50% at 10−6 M and a pD2 (−log10 EC50) of 6.818 ± 0.044. This relaxation could be prevented with HOE140 or LNNA, but was not influenced by [des-Arg9-Leu8] BK. [des-Arg9] BK did not induce any effect. These results demonstrate that BK induced relaxation via endothelial B2 receptors and release of NO in isolated rat MCA.  相似文献   

15.
Biological properties of amino-terminal PTHrP analogues modified in the region 11–13 were examined using ROS 17/2.8 cells. [Leu11,D-Trp12,Arg13,Tyr36]PTHrP(1–36)amide had a 17-fold lower binding affinity for the receptor (apparent Kd: 5 × 10−8 M) than [Tyr36]PTHrP(1–36)amide or [Arg11,13,Tyr36]PTHrP(1–36)amide (apparent Kd for both: 2 × 10−9 M). Moreover, it is only a weak partial agonist despite completely inhibiting radioligand binding. [Leu11,D-Trp12,Arg13,Tyr36,Cys38]PTHrP(7–38) and PTHrP(7–34)amide had similar receptor affinities (apparent Kds: 5 × 10−8 M and 8 × 10−8 M), while that of [Nle8,18,Tyr34]bPTH(7–34)amide was more than 10-fold lower (apparent Kd: 2 × 10−6 M). These changes in biological properties suggest that high affinity receptor binding requires both amino- and carboxyl-terminal domains of the PTHrP(1–36) sequence and/or intramolecular interactions which are impaired by the D-Trp substitution for Gly12.  相似文献   

16.
A plant tissue biosensor associated with flow injection analysis is proposed to determine epinephrine in pharmaceutical samples. The polyphenol oxidase enzymes present in the fibers of a palm tree fruits (Livistona chinensis), catalyses the oxidation of epinephrine to epinephrinequinone as a primary product. This product is then electrochemically reduced (at −0.10 V versus Ag/AgClsat) on the biosensor surface and the resulting current is used for the quantification of epinephrine. The biosensor provides a linear response for epinephrine in the concentration range from 5.0 × 10−5 to 3.5 × 10−4 mol l−1. The limit of detection estimated for this interval was 1.5 × 10−5 mol l−1 and the correlation coefficient of 0.998, working under a flow rate of 2.0 ml min−1 and using a sample loop of 100 μl. The repeatability (R.S.D. for 10 consecutive determinations of a 3.0 × 10−4 mol l−1 epinephrine solution) was 3.1%. The results obtained by the method here proposed were compared with the official UV spectrophotometric procedure and also using a plant tissue reactor. The responses obtained with the proposed strategies were in good agreement with both ways of analyses, whereas the values obtained by the official spectrophotometric method was strongly affected by benzoic acid, present in the formulation of pharmaceutical product utilized for inhalation. Such favorable results obtained with the carbon paste biosensor or utilizing the bioreactor, joined with the simplicity of its preparation turns these procedures very attractive for epinephrine quantification in pharmaceutical products.  相似文献   

17.
In present studies, the new optical sensing platform based on optical planar waveguide (OPWG) for sucrose estimation was reported. An evanescent-wave biosensor was designed by using novel agarose–guar gum (AG) biopolymer composite sol–gel with entrapped enzymes (acid invertase (INV) and glucose oxidase (GOD)). Partially purified watermelon invertase isolated from Citrullus vulgaris fruit (specific activity 832 units mg−1) in combination with GOD was physically entrapped in AG sol–gel and cladded on the surface of optical planar waveguide. Na+–K+ ion-exchanged glass optical waveguides were prepared and employed for the fabrication of sucrose biosensor. By addressing the enzyme modified waveguide structure with, the optogeometric properties of adsorbed enzyme layer (12 μm) at the sensor solid–liquid interface were studied. The OPWG sensor with short response time (110 s) was characterized using the 0.2 M acetate buffer, pH 5.5. The fabricated sucrose sensor showed concentration dependent linear response in the range 1 × 10−10 to 1 × 10−6 M of sucrose. Lower limit of detection of this novel AG–INV–GOD cladded OPWG sensor was found to be 2.5 × 10−11 M sucrose, which indicates that the developed biosensor has higher sensitivity towards sucrose as compared to earlier reported sensors using various transducer systems. Biochips when stored at room temperature, showed high stability for 81 days with 80% retention of original sensitivity. These sucrose sensing biochips showed good operational efficiency for 10 cycles. The proper confinement of acid invertase and glucose oxidase in hydrogel composite was confirmed by scanning electron microscopy (SEM) images. The constructed OPWG sensor is versatile, easy to fabricate and can be used for sucrose measurements with very high sensitivity.  相似文献   

18.
Studies on the binding affinity of protein to the active components of herbs are novel in biochemistry and are valuable for the information about speciation of drugs and exchange in biological systems. Alpinetin and cardamonin, two of the main constituents from the seeds of Alpinia katsumadai Hayata, have been used in traditional herbs as antibacterial, anti-inflammatory, and other important therapeutic activities of significant potency and low systemic toxicity. The interactions between two flavonoids analogs and lysozyme have been studied for the first time by spectroscopic method including Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD) and UV-absorption spectroscopy in combination with Fluorescence quenching study. Both molecules showed high affinities to lysozyme under the experimental condition with drug concentrations from 3.33 × 10−6 to 2.67 × 10−5 mol L−1 for alpinetin and 1.67 × 10−6 to 13.33 × 10−6 mol L−1 for cardamonin. The alterations of protein secondary structure in the presence of drugs in aqueous solution were quantitatively estimated by the evidences from CD and FT-IR spectroscopy. The thermodynamic parameters obtained and the results of spectroscopic measurements suggest that hydrophobic and electrostatic interactions are the predominant intermolecular forces stabilizing two coordination compounds. The quenching mechanism and the number of binding site (n ≈ 1) were obtained by fluorescence titration data. The efficiency of energy transfer provided the binding distances of 4.04 and 5.90 nm for alpinetin-LYSO and cardamonin-LYSO systems, respectively.  相似文献   

19.
This article reports the electrical responses of a phosphate ionophore, the cyclic polyamine 3-decyl-1,5,8-triazacyclodecane-2,4-dione (N3-cyclic amine) incorporated into metal supported bilayer lipid membranes (s-BLM). Teflon coated silver wire was used as a support. In a potentiometric mode, the ionophore had a response that was linearly related to the logarithm of HPO42− concentration and was also dependant on pH. Selectivity coefficients for other anions compared to HPO42− ions, determined by the separate solution method, fell within the range 1.73 × 10−4 to 6.38 × 10−2.  相似文献   

20.
A method for determination of carboxymethyl cellulose (CMC) molecular weight (MW) and chemical heterogeneity (degree of oxidation (DO)) using a bi-detector HPSEC (UV-detector online with refractometer) has been developed. It has been found that the use of 0.5 N NaOH or 0.4 M acetate buffer as the eluent ensures CMC separation according to MW. It has been revealed that the universal calibration for the polyelectrolyte CMC and the neutral polymer dextran is valid under the conditions applied. The Mark–Houwink equations for CMC in 0.5 N NaOH and 0.4 M acetate buffer have been estimated to be [η]=5.37×10−4 MW0.73 and [η] =2.24×10−4 MW0.83 dl g−1, respectively. The equation log K=1.64−4.00 ml g−1 for CMC has been estimated. An approach for determining DO from adsorption at 290 or 313 nm has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号