首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Forsythiae Fructus, the fruit of Forsythia suspense is a traditional Chinese hebal medicine that has the antiviral and antioxidant effects in China. Modern analytical chemistry studies showed that the extracts of Forsythiae Fructus contain many bioactive components, such as flavonoids, lignans, phenolic acids, and terpenoids, which can be used to anti-inflammatory and treat toxicity, tonsillitis, ulcers, pharyngitis and acute nephritis. In order to study the types and quantities of metabolites in Forsythiae Fructus, we isolated, identified and analysed metabolites between two varieties of Forsythiae Fructus using UPLC/ESI-Q TRAP-MS/MS. The results showed that a total of 407 metabolites were identified in Forsythiae Fructus using UPLC/ESI-Q TRAP-MS/MS, including 21 terpenoids, 68 phenolic acids, 63 flavonoids, 43 amino acids and derivatives, 22 alkaloids, 55 lipids, 24 lignans and coumarins, 31 nucleotides and derivatives, 29 organic acids, and 51 other metabolites. Among, lignans and coumarins, terpenoids, organic acids, lipids, and phenolic acids were rich in Forsythiae Fructus, which accounted for more than 60% of the total metabolite content. Differential metabolite analysis revealed that 80 metabolites differed significantly between the two types of Forsythiae Fructus. Our results greatly enrich the Forsythiae Fructus phytochemical composition database and provide valuable information for further study of the metabolites of Forsythiae Fructus.  相似文献   

4.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

5.
6.
Cargo sorting and membrane carrier initiation in recycling endosomes require appropriately coordinated actin dynamics. However, the mechanism underlying the regulation of actin organization during recycling transport remains elusive. Here we report that the loss of PTRN‐1/CAMSAP stalled actin exchange and diminished the cytosolic actin structures. Furthermore, we found that PTRN‐1 is required for the recycling of clathrin‐independent cargo hTAC‐GFP. The N‐terminal calponin homology (CH) domain and central coiled‐coils (CC) region of PTRN‐1 can synergistically sustain the flow of hTAC‐GFP. We identified CYK‐1/formin as a binding partner of PTRN‐1. The N‐terminal GTPase‐binding domain (GBD) of CYK‐1 serves as the binding interface for the PTRN‐1 CH domain. The presence of the PTRN‐1 CH domain promoted CYK‐1‐mediated actin polymerization, which suggests that the PTRN‐1‐CH:CYK‐1‐GBD interaction efficiently relieves autoinhibitory interactions within CYK‐1. As expected, the overexpression of the CYK‐1 formin homology domain 2 (FH2) substantially restored actin structures and partially suppressed the hTAC‐GFP overaccumulation phenotype in ptrn‐1 mutants. We conclude that the PTRN‐1 CH domain is required to stimulate CYK‐1 to facilitate actin dynamics during endocytic recycling.  相似文献   

7.
Obesity and its associated metabolic disorders such as diabetes, hepatic steatosis and chronic heart diseases are affecting billions of individuals. However there is no satisfactory drug to treat such diseases. In this study, we found that alisol A, a major active triterpene isolated from the Chinese traditional medicine Rhizoma Alismatis, could significantly attenuate high‐fat‐diet‐induced obesity. Our biochemical detection demonstrated that alisol A remarkably decreased lipid levels, alleviated glucose metabolism disorders and insulin resistance in high‐fat‐diet‐induced obese mice. We also found that alisol A reduced hepatic steatosis and improved liver function in the obese mice model.In addition, protein expression investigation revealed that alisol A had an active effect on AMPK/ACC/SREBP‐1c pathway. As suggested by the molecular docking study, such bioactivity of alisol A may result from its selective binding to the catalytic region of AMPK.Therefore, we believe that Alisol A could serve as a promising agent for treatment of obesity and its related metabolic diseases.  相似文献   

8.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

9.
Accumulating evidence has reported that microRNA‐144‐3p (miR‐144‐3p) is highly related to oxidative stress and apoptosis. However, little is known regarding its role in cerebral ischemia/reperfusion‐induced neuronal injury. Herein, our results showed that miR‐144‐3p expression was significantly downregulated in neurons following oxygen–glucose deprivation and reoxygenation (OGD/R) treatment. Overexpression of miR‐144‐3p markedly reduced cell viability, promoted cell apoptosis, and increased oxidative stress in neurons with OGD/R treatment, whereas downregulation of miR‐144‐3p protected neurons against OGD/R‐induced injury. Brahma‐related gene 1 (Brg1) was identified as a potential target gene of miR‐144‐3p. Moreover, downregulation of miR‐144‐3p promoted the nuclear translocation of nuclear factor erythroid 2‐related factor 2 (Nrf2) and increased antioxidant response element (ARE) activity. However, knockdown of Brg1 significantly abrogated the neuroprotective effects of miR‐144‐3p downregulation. Overall, our results suggest that miR‐144‐3p contributes to OGD/R‐induced neuronal injury in vitro through negatively regulating Brg1/Nrf2/ARE signaling.  相似文献   

10.
We investigated the effects and associated mechanism of alkannin (AL) on lipopolysaccharide (LPS)‐induced acute lung injury in a mouse model. Pretreatment with AL in vivo significantly reduced the lung wet/dry weight ratio and inhibited lung myeloperoxidase activity and malondialdehyde content, while increasing superoxide dismutase activity. Hematoxylin and eosin staining demonstrated that AL attenuated lung histopathological changes. In addition, AL‐inhibited overproduction of proinflammatory cytokines in bronchoalveolar lavage fluid and lung tissues in LPS‐injured mice and LPS‐exposed A549 cells. Further analysis showed that AL‐inhibited induction of the Rho/ROCK/NF‐κB pathway via LPS‐induced inflammation in mice and A549 cells. Fasudil, a selective ROCK inhibitor, showed similar effects. Overall, the findings indicate that AL suppresses the expression of messenger RNAs and proteins associated with Rho/ROCK/NF‐κB signaling to effectively ameliorate lung injury.  相似文献   

11.
Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above‐mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up‐regulation of MCU promoted the expression and activation of calpain‐1/2 and down‐regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock‐down cultured cell. In I/R models of transgenic mice over‐expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up‐regulation induces calpain activation, which down‐regulates OPA1, consequently leading to mitochondrial dynamic imbalance.  相似文献   

12.
13.
目的甲型H1N1流感病毒A/California/7/2009与A/California/4/2009病毒序列比较同源性在99%以上,本实验旨在比较两株病毒感染BALB/c小鼠研究感染力强弱。方法分别将A/California/7/2009(CA7)与A/California/4/2009(CA4)两株病毒分别连续10倍稀释后,对4~6周龄雌性BALB/c小鼠经乙醚麻醉后进行滴鼻攻毒,每个稀释度接种10只实验小鼠,测定CA7 MLD50为101.24/0.05 mL,检测小鼠感染、致病的多项指标,观察期为14 d。结果相同TCID50的CA7和CA4病毒感染小鼠,CA4感染小鼠后14 d内死亡率为20%,而CA7感染小鼠后8 d内死亡率为100%。CA7 106TCID50感染的小鼠病理表现为重度弥漫性间质性肺炎,CA4 106TCID50感染的小鼠病理表现为中度-重度间质性肺炎。结论在相同条件下,CA7感染力明显强于CA4。  相似文献   

14.
The present study delineates the in vivo efficiency of two site‐specific recombination systems, VCre/VloxP and SCre/SloxP, in medaka (Oryzias latipes). VCre, SCre, and Cre RNA was microinjected into fertilized medaka eggs belonging to three transgenic lines harboring VloxP, SloxP, and loxP cassette. VCre induced site‐specific recombination specifically at VloxP sequence and SCre at SloxP sequence without any cross‐reactivity. These findings provide two novel alternative recombination systems in vivo in addition to the existing Cre/loxP and Flp/FRT systems, thus enabling sophisticated gene expression in model organisms.  相似文献   

15.
The oxygen evolution reaction (OER), as an important process involved in water splitting and rechargeable metal–air batteries, has drawn increasing attention in the context of clean energy generation and efficient energy storage. This review concerns the progress and new discoveries in the field of Ni/Fe‐based micro/nanostructures toward electrochemical and photo‐electrochemical (PEC) water oxidation during last few years. First, toward the design and construction of new electrocatalysis, different types of current Ni/Fe‐based compounds for OER are summarized. The mechanism studies of the active phases and positions of Ni/Fe‐based micro/nanostructures are further introduced to understand the properties of catalytic active sites, which could facilitate further improving the performance of Ni/Fe‐based OER electrocatalysts. Second, splitting water using sunlight with low overpotential is another important target in making solar‐to‐hydrogen micro/nanodevices, and thus attention is then focused on the development of several important Ni/Fe‐based PEC catalysts. Third, the recent theoretical calculations on the OER mechanism during water splitting and insights into electronic structures are analyzed; finally, the future trends and perspectives are also discussed briefly.  相似文献   

16.
17.
18.
Engineering adipose tissue that has the ability to engraft and establish a vascular supply is a laudable goal that has broad clinical relevance, particularly for tissue reconstruction. In this article, we developed novel microtissues from surface‐coated adipocyte/collagen/alginate microspheres and human umbilical vein endothelial cells (HUVECs) co‐cultures that resembled the components and structure of natural adipose tissue. Firstly, collagen/alginate hydrogel microspheres embedded with viable adipocytes were obtained to mimic fat lobules. Secondly, collagen fibrils were allowed to self‐assemble on the surface of the microspheres to mimic collagen fibrils surrounding the fat lobules in the natural adipose tissue and facilitate HUVEC attachment and co‐cultures formation. Thirdly, the channels formed by the gap among the microspheres served as the room for in vitro prevascularization and in vivo blood vessel development. The endothelial cell layer outside the microspheres was a starting point of rapid vascular ingrowth. Adipose tissue formation was analyzed for 12 weeks at 4‐week intervals by subcutaneous injection into the head of node mice. The vasculature in the regenerated tissue showed functional anastomosis with host blood vessels. Long‐term stability of volume and weight of the injection was observed, indicating that the vasculature formed within the constructs benefited the formation, maturity, and maintenance of adipose tissue. This study provides a microsurgical method for adipose regeneration and construction of biomimetic model for drug screening studies. Biotechnol. Bioeng. 2013; 110: 1430–1443. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
This study aims to determine the efficacy of Zinc finger protein ZBTB20 in treatment of post‐infarction cardiac remodelling. For this purpose, left anterior descending (LAD) ligation was operated on mice to induce myocardial infarction (MI) with sham control group as contrast and adeno‐associated virus (AAV9) system was used to deliver ZBTB20 to mouse heart by myocardial injection with vehicle‐injected control group as contrast two weeks before MI surgery. Then four weeks after MI, vehicle‐treated mice with left ventricular (LV) remodelling underwent deterioration of cardiac function, with symptoms of hypertrophy, interstitial fibrosis, inflammation and apoptosis. The vehicle‐injected mice also showed increase of infarct size and decrease of survival rate. Meanwhile, the ZBTB20‐overexpressed mice displayed improvement after MI. Moreover, the anti‐apoptosis effect of ZBTB20 was further confirmed in H9c2 cells subjected to hypoxia in vitro. Further study suggested that ZBTB20 exerts cardioprotection by inhibiting tumour necrosis factor α/apoptosis signal‐regulating kinase 1 (ASK1)/c‐Jun N‐terminal kinase 1/2 (JNK1/2) signalling, which was confirmed by shRNA‐JNK adenoviruses transfection or a JNK activator in vitro as well as ASK1 overexpression in vivo. In summary, our data suggest that ZBTB20 could alleviate cardiac remodelling post‐MI. Thus, administration of ZBTB20 can be considered as a promising treatment strategy for heart failure post‐MI.Significance Statement: ZBTB20 could alleviate cardiac remodelling post‐MI via inhibition of ASK1/JNK1/2 signalling.  相似文献   

20.
Construction of stable dendrite‐free Li metal anode is crucial for the development of advanced Li–S and Li–air batteries. Herein, self‐supported TiC/C core/shell nanowire arrays as skeletons and confined hosts of molten Li forming integrated trilayer TiC/C/Li anode are described. The TiC/C core/shell nanowires with diameters of 400–500 nm exhibit merits of good lithiophilicity, high electrical conductivity, and abundant porosity. The as‐prepared TiC/C/Li anode exhibits prominent electrochemical performance with a small hysteresis of less than 85 mV beyond 200 cycles (3.0 mA cm?2) as well as a very high Coulombic efficiency up to 98.5% for 100 cycles at 1.0 mA cm?2. When the structured anode is coupled with lithium iron phosphate or sulfur cathode, the assembled full cells with trilayer TiC/C/Li anodes display enhanced capability retention and improved Coulombic efficiency. This is ascribed to the unique TiC/C matrix, which can not only provide interspace for accommodating “hostless” Li, but also afford interconnected rapid transfer paths for electrons and ions with low local current densities, leading to effective inhabitation growth of Li dendrites and lower interfacial resistance. A fresh way for construction of advanced stable Li metal anodes is provided in this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号