首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The enzyme endothelial Nitric Oxide Synthase (eNOS) is involved in key physiological and pathological processes, including cell motility and apoptosis. It is widely believed that at the cell surface eNOS is localized in caveolae, where caveolin-1 negatively regulates its activity, however, there are still uncertainties on its intracellular distribution. Here, we applied high resolution confocal microscopy to investigate the surface distribution of eNOS in transfected HeLa cells and in human umbilical vein endothelial cells (HUVEC) endogenously expressing the enzyme. In confluent and non-confluent HUVEC and HeLa cells, we failed to detect substantial colocalization between eNOS and caveolin-1 at the cell surface. Instead, in non-confluent cells, eNOS was concentrated in ruffles and at the leading edge of migrating cells, colocalizing with actin filaments and with the raft marker ganglioside G(M1), and well segregated from caveolin-1, which was restricted to the posterior region of the cells. Treatments that disrupted microfilaments caused loss of eNOS from the cell surface and decreased Ca(2+)-stimulated activity, suggesting a role of the cytoskeleton in the localization and function of the enzyme. Our results provide a morphological correlate for the role of eNOS in cell migration and raise questions on the site of interaction between eNOS and caveolin-1.  相似文献   

2.
The 15-hydroxyeicosatetraenoic acid (15-HETE), a lipid metabolite and vasoconstrictor, plays an important role in hypoxic contraction of pulmonary arteries (PAs) through working on smooth muscle cells (SMCs). Previous studies have shown that vascular endothelium is also involved in PAs tone regulation. However, little is known as to how the pulmonary artery endothelial cells (PAECs) are related to the 15-HETE-induced vasoconstriction and that which intracellular signaling systems are critical. To test this hypothesis, we examined PAs constriction in isolated rat PAs rings, the expression and activity of endothelial nitric oxide synthase (eNOS) with western blot, and nitric oxide (NO) production using the DAF-FM DA fluorescent indicator. The results showed that the 15-HETE-induced PAs constriction was diminished in endothelium-intact rings. In the presence of the eNOS inhibitor L-NAME, vasoconstrictor responses to KCl were greater than the control. The activation of eNOS was activated by Ca2+ released from intracellular stores and the PI3K/Akt pathway. Phosphorylations of the eNOS at Ser-1177 and Akt at Ser-473 were necessary for their activity. A prolonged 15-HETE treatment (30?min) led to a decrease in NO production by phosphorylation of eNOS at Thr-495, leading to augmentation of PAs constriction. Therefore, 15-HETE initially inhibited the PAs constriction through the endothelial NO system, and both Ca2+ and the PI3K/Akt signaling systems are required for the effects of 15-HETE on PAs tone regulation.  相似文献   

3.
GSE (grape seed extract) has been shown to exhibit protective effects against cardiovascular events and atherosclerosis, although the underlying molecular mechanisms of action are unknown. Herein, we assessed the ability of GSE to enhance eNOS (endothelial nitric oxide synthase) expression and NO (nitric oxide) production in H2O2 (hydrogen peroxide)‐treated HUVECs (human umbilical vein endothelial cells). GSE enhanced eNOS expression and NO release in H2O2‐treated cells in a dose‐dependent manner. GSE inhibited intracellular ROS (reactive oxygen species) and reduced intracellular calcium in a dose‐dependent manner in H2O2‐treated cells, as shown by confocal microscopy. ROS was inhibited in cells pretreated with 5.0 μM GSE, 2.0 μM TG (thapsigargin) and 20.0 μM 2‐APB (2‐aminoethoxydiphenyl borate) instead of 0.25 μM extracellular calcium. In addition, GSE enhanced eNOS expression and reduced ROS production via increasing p‐AKT (AKT phosphorylation) with high extracellular calcium (13 mM). In conclusion, GSE protected against endothelial injury by up‐regulation of eNOS and NO expression via inhibiting InsP3Rs (inositol 1,4,5‐trisphosphate receptors)‐mediated intracellular excessive calcium release and by activating p‐AKT in endothelial cells.  相似文献   

4.
Microsphere embolism (ME)-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was observed 2-48 h after ischemia. eNOS induction preceded disruption of the blood-brain barrier (BBB) observed 6-72 h after ischemia. In vascular endothelial cells, ME-induced eNOS expression was closely associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. Leakage of rabbit IgG from microvessels was also evident around protein tyrosine nitration-immunoreactive microvessels. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates BBB disruption in the ME brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), which inhibits eNOS activity and, in turn, protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue (EB) excretion. DY-9760e also inhibited cleavage of poly (ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, ME-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and, in turn, brain edema.  相似文献   

5.
Accumulating evidences point to a significant role for the chromogranin A (CgA)‐derived peptide vasostatin 1 (VS‐1) in the protective modulation of the cardiovascular activity, because of its ability to counteract the adrenergic signal. We have recently shown that VS‐1 induces a PI3K‐dependent‐nitric oxide (NO) release by endothelial cells, contributing to explain the mechanism of its cardio‐suppressive and vasodilator properties. However, the cellular processes upstream the eNOS activation exerted by this peptide are still unknown, as typical high‐affinity receptors have not been identified. Here we hypothesize that in endothelial cells VS‐1 acts, on the basis of its cationic and amphipathic properties, as a cell penetrating peptide, binding to heparan sulfate proteoglycans (HSPGs) and activating eNOS phosphorylation (Ser1179) through a PI3K‐dependent, endocytosis‐coupled mechanism. In bovine aortic endothelial cells (BAE‐1 cells) endocytotic vesicles trafficking was quantified by confocal microscopy with a water‐soluble membrane dye; caveolin 1 (Cav1) shift from plasma membrane was studied by immunofluorescence staining; VS‐1‐dependent eNOS phosphorylation was assessed by immunofluorescence and immunoblot analysis. Our experiments demonstrate that VS‐1 induces a marked increase in the caveolae‐dependent endocytosis, (115 ± 23% endocytotic spots/cell/field in VS‐1‐treated cells with respect to control cells), that is significantly reduced by both heparinase III (HEP, 17 ± 15% above control) and Wortmannin (Wm, 7 ± 22% above control). Heparinase, Wortmannin, and methyl‐β‐cyclodextrin (MβCD) abolish the VS‐1‐dependent eNOS phosphorylation (PSer1179eNOS). These results suggest a novel signal transduction pathway for endogenous cationic and amphipathic peptides in endothelial cells: HSPGs interaction and caveolae endocytosis, coupled with a PI3K‐dependent eNOS phosphorylation. J. Cell. Biochem. 110: 70–79, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Wernicke's encephalopathy is a cerebral disorder caused by thiamine (vitamin B1) deficiency (TD). Neuropathologic consequences of TD include region-selective neuronal cell loss and blood-brain barrier (BBB) breakdown. Early increased expression of the endothelial isoform of nitric oxide synthase (eNOS) occurs selectively in vulnerable brain regions in TD. We hypothesize that region-selective eNOS induction in TD leads to altered expression of tight junction proteins and BBB breakdown. In order to address this issue, TD was induced in C57BL/6 wild-type (WT) and eNOS−/− mice by feeding a thiamine-deficient diet and treatment with the thiamine antagonist pyrithiamine. Pair-fed control mice were fed the same diet with additional thiamine. In medial thalamus of TD-WT mice (vulnerable area), increased heme oxygenase-1 and S -nitrosocysteine immunostaining was observed in vessel walls, compared to pair-fed control-WT mice. Concomitant increases in IgG extravasation, decreases in expression of the tight junction proteins occludin, zona occludens-1 and zona occludens-2, and up-regulation of matrix metalloproteinase-9 in endothelial cells were observed in the medial thalamus of TD-WT mice. eNOS gene deletion restored these BBB alterations, suggesting that eNOS-derived nitric oxide is a major factor leading to cerebrovascular alterations in TD. However, eNOS gene deletion only partially attenuated TD-related neuronal cell loss, suggesting the presence of mechanisms additional to BBB disruption in the pathogenesis of these changes.  相似文献   

7.
Tang YB  Wang QL  Zhu BY  Huang HL  Liao DF 《生理学报》2005,57(3):373-378
观察金雀异黄酮(genistein)替代治疗对卵巢切除大鼠心肌中一氧化氮(nitric oxide,NO)和内皮型一氧化氮合酶(endothelial nitric oxide synthase,eNOS)的影响.成年雌性Sprague-Dawley大鼠经双侧卵巢切除术,假手术组作为对照,术后三周将行卵巢切除术的大鼠随机分为低剂量genistein(0.5 mg/kg·d1)、高剂量genistein(5.0 mg/kg·d-1)、17-β雌二醇(0.1 mg/kg·d-1)和模型组(100μl/d芝麻油),各组均皮下注射给药并给予不含大豆的饲料喂养6周,测定大鼠尾动脉血压、心率,麻醉后放血处死大鼠称量子宫重量;放免法检测血浆中总雌二醇,亚硝酸还原酶法检测心肌匀浆中NO,Western blot检测心肌中eNOS的表达以及eNOS的调节蛋白小凹蛋白-1(caveolin-1)和钙调素(calmodulin)的表达情况.结果显示各组间大鼠血压无显著性差异,同17-β雌二醇一样,genistein能呈剂量依赖性地增加心肌组织中eNOS表达量和NO生成,同时genistein能明显降低内源性eNOS活性抑制物caveolin-1的表达,而不影响eNOS活性正性调节蛋白钙调素的表达.与溶媒对照组比较,0.5 mg/kg·d-1的genistein不增加子宫重量,5.0 mg/kg·d-1的genistein增加子宫重量3倍,但较17-β雌二醇(增加6倍)的作用小(P<0.01).上述结果提示,植物雌激素genistein剂量依赖性地上调心肌组织eNOS的活性并增加NO的生成,减少抑制eNOS活性的小凹蛋白-1表达.  相似文献   

8.
Several rich sources of polyphenols stimulate the endothelial formation of nitric oxide (NO), a potent vasoprotecting factor, via the redox-sensitive activation of the PI3-kinase/Akt pathway leading to the phosphorylation of endothelial NO synthase (eNOS). The present study examined the molecular mechanism underlying the stimulatory effect of epicatechins on eNOS. NO-mediated relaxation was assessed using porcine coronary artery rings in the presence of indomethacin, and charybdotoxin plus apamin, inhibitors of cyclooxygenases and EDHF-mediated responses, respectively. The phosphorylation level of Akt and eNOS was assessed in cultured coronary artery endothelial cells by Western blot, and ROS formation using dihydroethidine. (−)-Epigallocatechin-3-O-gallate (EGCg) caused endothelium-dependent relaxations in coronary artery rings and the phosphorylation of Akt and eNOS in endothelial cells. These responses were inhibited by membrane-permeant analogues of superoxide dismutase and catalase, whereas native superoxide dismutase, catalase and inhibitors of major enzymatic sources of reactive oxygen species including NADPH oxidase, xanthine oxidase, cytochrome P450 and the mitochondrial respiration chain were without effect. The EGCg derivative with all hydroxyl functions methylated induced neither relaxations nor the intracellular formation of ROS, whereas both responses were observed when the hydroxyl functions on the gallate moiety were present. In conclusion, EGCg causes endothelium-dependent NO-mediated relaxations of coronary artery rings through the Akt-dependent activation of eNOS in endothelial cells. This response is initiated by the intracellular formation of superoxide anions and hydrogen peroxide, and is critically dependent on the gallate moiety and on the presence of hydroxyl functions possibly through intracellular auto-oxidation.  相似文献   

9.
The mechanisms leading to the age-related loss of endothelial nitric oxide (NO) and NO-dependent vasodilation remain largely unknown. Freshly isolated endothelium from young (6 months) and old (36 months) F344xBrN rats were analyzed for endothelial nitric oxide synthase (eNOS) protein, its subcellular distribution, and association with regulatory proteins. Results show that both vessel ring vasoreactivity and A23187-induced eNOS activity in isolated endothelial cells significantly (p < or = 0.05) declined with age. Levels of cGMP, a reliable marker for NO bioactivity also declined significantly (p < or = 0.01). However, no change in overall eNOS protein was evident. Subcellular fractionation studies revealed an age-related loss in active, plasma membrane-bound eNOS relative to eNOS in the Golgi/cytosol of the endothelium. Plasma membrane-associated eNOS in aged endothelium was also less complexed with the activating proteins Hsp90 and Akt and more associated with to caveolin-1, which inhibits eNOS activity. These results suggest that age-dependent loss of NO may be partly caused by differences in eNOS subcellular distribution and its association with inhibitory proteins.  相似文献   

10.
11.
Dual ligand treatment of streptavidin(SA)-biotin and fibronectin (Fn) enhances the adhesion of endothelial cells (EC) onto synthetic surfaces and promotes the quiescent phenotype of adherent EC. The current study investigates the effect of the dual ligand on the expression of endothelial genes in static culture and under shear stress (4 h at 10 dynes/cm2). Expression of 23 genes in the classes of signaling, cytoskeleton/ECM, vasoregulation, and shear-responsive were examined. Eight genes (argininosuccinate synthetase, K+ channel, TGFbeta, Mn-SOD, alpha-tubulin, t-PA, COX2, and eNOS) were significantly upregulated by shear stress. Two genes (caveolin-1 and ET-1) were downregulated by shear stress. Three genes (RhoA, elastin, alpha-actinin) were upregulated by the dual ligand treatment in static culture, and four genes (FAK, elastin, COX2, and eNOS) were upregulated when the dual ligand and shear stress were applied simultaneously. Northern blot analyses on FAK, RhoA, elastin, and alpha-actinin revealed similar results. The results suggest (1) the use of SA-biotin to supplement EC adhesion enhances the integrity of the EC cytoskeleton by upregulating the expression of cytoskeleton/ECM genes, and (2) a likely relationship between the expression of cytoskeleton/ECM genes and the downstream events, such as the shear-induced expression of eNOS and COX2 genes. Analyses presented in this study provide insights into the mechanism by which SA-biotin-supplemented EC mediate gene expression.  相似文献   

12.
13.
该文探讨了白细胞介素-6(interleukin-6,IL-6)对牛主动脉内皮细胞(bovine aortic endo-thelial cells,BAECs)的内皮型一氧化氮合成酶(endothelial nitric oxide synthase,eNOS)的影响及其可能的发生机制.在原代BAECs细胞培养基础上...  相似文献   

14.
The objective of the present study is to identify the possible regulatory role of trehalose (Tre) against cadmium chloride (CdCl2)-induced endothelial cell dysfunction. To screen the dose-dependent effect of both Tre and CdCl2, a methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was performed. Interestingly, MTT assay results have shown that co-incubation of Tre (1 mM) with CdCl2 significantly decreased the CdCl2 (5 µM) cytotoxicity. Nitric oxide (NO) measurement using Griess assay and 4-amino-5-methylamino-2ʹ,7ʹ-difluorofluorescein fluorescence probe results have shown that CdCl2 decreases NO production in endothelial cells. Western blotting analysis results showed that CdCl2 decreases endothelial nitric oxide synthase (eNOS) and phospho endothelial nitric oxide synthase (peNOS) expression. The present study results have also observed that CdCl2 treatment increases reactive oxygen species (ROS) production. However, combination treatment (Tre + CdCl2) could restore the NO production in CdCl2-treated cells. In addition, combination treatment could also restore eNOS and peNOS expression in endothelial cells. Moreover, Tre treatment was found to decrease CdCl2-induced ROS production. Collectively, the present study results demonstrate that Tre possesses a significant protective action against CdCl2-mediated endothelial dysfunction by increasing NO production, eNOS and peNOS expression, and by decreasing oxidative stress.  相似文献   

15.
Preservation with University of Wisconsin (UW) solution has been implicated in coronary artery endothelial damage and loss of endothelium-dependent vasodilatation. Therefore, the objective of this study was to investigate the effect of this solution on basal nitric oxide (NO) release from porcine coronary endothelial cells (CEC). Cultures were exposed to cold (4 degrees C) storage in UW solution for 6, 8 and 12 h. Parallel cultures were incubated with control medium at 37 degrees C. After treatment, NO release was evaluated by nitrite production, a stable metabolite of NO. Activity of the constitutive endothelial nitric oxide synthase (eNOS) was measured by the conversion [3H]-l-arginine to [3H]-l-citrulline and eNOS protein expression by Western blotting. Nitrite production by control cells was augmented with increasing times of incubation, whereas no change was observed in those cultures preserved with UW solution. Activity of eNOS was significantly decreased compared to the respective control group by cold storage of cells for longer periods than 6 h. Such decrease was correlated with a diminished eNOS protein expression in CEC preserved with UW solution after 8- and 12-h storage. These results suggest that prolonged hypothermic storage of CEC with UW solution does not preserve basal NO release because of a certain loss of eNOS protein, which may contribute to the reported injury of heart transplants after long-term preservation.  相似文献   

16.
Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver‐secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the β‐klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2O2)‐induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2O2. Administration of N(ω)‐nitro‐L‐arginine methyl ester (L‐NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)‐deficient mice that were fed a high‐fat diet (HFD). Endothelial function, as reflected by acetylcholine‐stimulated aortic relaxation, was improved after FGF21 treatment in ApoE‐deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE‐deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD‐induced vascular injury in ApoE‐deficient mice.  相似文献   

17.
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.  相似文献   

18.
To investigate the association of endothelial nitric oxide synthase gene intron 4 (eNOS4) polymorphisms with nephrotic syndrome, the eNOS4 genotypes were assessed in 161 children with nephrotic syndrome in comparison with 78 healthy subjects. We classified the children with nephritic syndrome into 2 groups: as steroid-sensitive nephrotic syndrome (SSNS) (n = 125) and steroid-resistant nephrotic syndrome (SRNS) (n = 36). The eNOS4 polymorphisms were analyzed by polymerase chain reaction. The frequencies of eNOS4 aa, ab and bb genotypes were 3%, 31%, and 66% in all the nephrotic syndrome groups, and 1%, 23%, and 76% in the control group (x2 = 2.87, p > 0.05). In addition, the frequencies of eNOS4 aa, ab and bb genotypes were 2%, 33%, and 65% in SSNS group, and 5%, 28%, and 67% in the SRNS group (x2 = 1.13, p = 0.567). The present study is the first to investigate eNOS4 gene polymorphisms in children with SSNS and SRNS. Our data show that the eNOS4 gene polymorphisms were not associated with the development, frequent relapse and response to steroid in nephritic syndrome.  相似文献   

19.
《Free radical research》2013,47(9):1027-1035
Abstract

To date, the role that NO derived from endothelial NO synthase (eNOS) plays in the development of the injuries occurring under hypoxia/reoxygenation (H/R) in the lung remains unknown and thus constitutes the subject of the present work. A follow-up study was conducted in Wistar rats submitted to H/R (hypoxia for 30 min; reoxygenation of 0 h, 48 h and 5 days), with or without prior treatment using the eNOS inhibitor L-NIO (20 mg/kg). Lipid peroxidation, apoptosis, protein nitration and NO production (NOx) were analysed. The results showed that L-NIO administration lowered NOx levels in all the experimental groups. Contrarily, the lipid peroxidation level and the percentage of apoptotic cells rose, implying that eNOS-derived NO may have a protective effect against the injuries occurring during H/R in the lung. These findings could open the possibility of future studies to design new therapies for this type of hypoxia based on NO-pharmacology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号