首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neisseria gonorrhoeae strains with nutritional requirements that include arginine (Arg-), uracil (Ura-), and hypoxanthine have attracted attention because of their tendency to cause disseminated infections, as a basis for genetic studies of arginine and pyrimidine biosynthesis, we examined the activities of four enzymes of these pathways in cell-free extracts of both prototrophic and Arg- Ura- strains. Activities of glutamate acetyltransferase, aspartate transcarbamylase, and orotate phosphoribosyltransferase, encoded respectively by argE, pyrB, and pyrE, were absent in some Arg- Ura- isolates. Gonococci that were unable to utilize ornithine for growth in place of citrulline lacked activity of carbamyl phosphate synthetase (encoded by car). Defects of car imposed requirements for both citrulline (or arginine) and a pyrimidine because of the dual role of carbamyl phosphate in the two pathways. Defects of argE, car, pyrB, and pyrE were separately introduced by genetic transformation into representatives of a gonococcal strain which initially was prototrophic. Results of enzyme assays of these isogenic auxotrophic transformants confirmed the gene-enzyme relationships.  相似文献   

2.
Spontaneous Arg- mutants arose at high frequencies in Streptomyces lividans. Exposure to ethidium bromide increased the frequency of arg instability. In Pro+ strains the induced arg mutants were mainly argG, but in the proB mutants, a new mutation, argJ, prevailed which lacked ornithine acetyltransferase activity and required ornithine for growth. Introduction of the cloned proB gene of Streptomyces coelicolor A3(2) into the proB argJ mutants not only complemented the proB mutation but also suppressed the argJ mutation. The proB mutation was also suppressed by adding ornithine to the medium. These results indicated crossfeeding(s) between the arginine and proline pathways in S. lividans, which presumably circumvented the detection of argJ mutations in Pro+ strains.  相似文献   

3.
Thirty-two independent mutants were isolated which overcame the proline requirement of pro-3 mutations in Neurospora crassa. The mutations were not revertants, appeared to be allelic, were closely linked or allelic to arg-6, and in strains unable to degrade ornithine no longer suppressed the proline requirement. The suppressor mutations did not alter the levels of biosynthetic or catabolic enzymes, yet allowed accumulation of ornithine. Suppressed strains unable to degrade arginine still produced ornithine (as detected by growth) in arginine-supplemented medium. The results suggest that the suppressor mutants were impaired in the feedback inhibition of ornithine synthesis by arginine. The activity of the appropriate biosynthetic enzyme was less sensitive to inhibition by arginine. The potential usefulness of such mutations is discussed.  相似文献   

4.
5.
Utilization of arginine by Klebsiella aerogenes.   总被引:9,自引:9,他引:0       下载免费PDF全文
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.  相似文献   

6.
Ornithine aminotransferase catalyzes the reversible transamination of L-ornithine to delta1-pyrroline-5-carboxylate, the immediate precursor of proline. The direction and flux through this pathway in mammalian cells has not been established. Glutamate has generally been considered to be the most important precursor for proline biosynthesis, but recent studies in xiphoid cartilage indicate that a significant fraction of cellular proline is derived from ornithine. Using newly isolated mutant Chinese hamster ovary cells with defined defects in the proline biosynthetic pathways, we now have established that cells can grow at a maximal rate with ornithine as the sole source of proline. Furthermore, we have measured the rate of proline formation from ornithine (1.6 nmol/h/10(6) cells); Future studies with these mutant Chinese hamster ovary cells may offer insight into the regulatory mechanism which coordinates proline biosynthesis from ornithine and glutamate.  相似文献   

7.
Growth of Tetrahymena thermophila in a synthetic nutrient medium with or without the essential amino acid L-arginine was studied in the presence or absence of the arginine metabolites L-citrulline and L-ornithine and the polyamines putrescine, spermidine, and spermine. The effects of the growth conditions on the stimulations of the enzymes of the arginine metabolic and polyamine biosynthetic pathway, arginine deiminase (ADI), citrulline hydrolase (CH), ornithine decarboxylase (ODC), and ornithine-oxo-acid aminotransferase were determined. Tetrahymena cells were unable to grow in the absence of L-arginine and the amino-acid utilization was greatly impaired. None of the metabolites or polyamines was able to substitute for arginine. In the presence of arginine, Tetrahymena cultures grew well and citrulline and ornithine did not alter the growth behaviour in any way. In the presence of putrescine, the lag period was decreased from 3 h to 2 h. Spermidine and spermine acted similar to putrescine but less pronounced. The stimulation of the activity of ADI, the key enzyme of arginine degradation, was absolutely dependent upon the presence of arginine in the medium: in the absence of arginine, the low ADI activity which was present in the cells before inoculation was decreased to zero levels within 30 min. In the presence of arginine, the stimulation of ADI was not altered by citrulline and ornithine but putrescine, spermidine, and spermine decreased ADI-stimulation to half of the control values. The stimulation of CH activity in the presence of arginine was not altered by any added metabolite or polyamine. In the media without arginine, stimulation of CH was greatly reduced, in the presence of ornithine more than in its absence, and even more in the presence of putrescine and spermidine. Stimulation of ODC activity in the presence of arginine was not affected by citrulline and ornithine but in the presence of polyamines it was rapidly decreased to unstimulated levels after an initial ca. 10-fold increase. The "hyperstimulation" of ODC in the absence of free arginine was reduced to normal in the presence of citrulline, the stimulation was decreased even below normal levels in the presence of ornithine and polyamines decreased ODC activity to zero levels. O delta T activity was stimulated more in the presence of arginine than in its absence. In both cases the stimulation was enhanced in the presence of polyamines and only in the absence of arginine--by ornithine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Ornithine cyclodeaminase activity in Rhizobium meliloti   总被引:1,自引:0,他引:1  
Abstract Deamination of L-ornithine to L-proline by ornithine cyclodeaminase is an unusual enzyme reaction that has been shown to occur in only a few bacteria. Rhizobium meliloti strains GR4, 2011 and 41 are able to use ornithine as the sole carbon and nitrogen source. The main pathway of ornithine utilization in strain GR4 depends on ornithine cyclodeaminase activity. In addition, this enzymatic activity has been found to be dependent on NAD+ and L-arginine similar to Agrobacterium ornithine cyclodeaminases. The ornithine cyclodeaminase activity is also expressed in R. meliloti strains 2011 and 41 growing with L-ornithine.  相似文献   

9.
Receptor interacting protein 140 (RIP140), a ligand-dependent corepressor for nuclear receptors, can be modified by arginine methylation. Three methylated arginine residues, at Arg-240, Arg-650, and Arg-948, were identified by mass spectrometric analysis. Site-directed mutagenesis studies demonstrated the functionality of these arginine residues. The biological activity of RIP140 was suppressed by protein arginine methyltransferase 1 (PRMT1) due to RIP140 methylation, which reduced the recruitment of histone deacetylases to RIP140 and facilitated its nuclear export by enhancing interaction with exportin 1. A constitutive negative (Arg/Ala) mutant of RIP140 was resistant to the effect of PRMT1, and a constitutive positive (Arg/Phe) mutation mimicked the effect of arginine methylation. The biological activities of the wild type and the mutant proteins were examined in RIP140-null MEF cells. This study uncovered a novel means to inactivate, or suppress, RIP140, and demonstrated protein arginine methylation as a critical type of modification for corepressor.  相似文献   

10.
Arginine metabolism in lactic streptococci.   总被引:35,自引:14,他引:21       下载免费PDF全文
Streptococcus lactis metabolizes arginine via the arginine deiminase pathway producing ornithine, ammonia, carbon dioxide, and ATP. In the four strains of S. lactis examined, the specific activities of arginine deiminase and ornithine transcarbamylase were 5- to 10-fold higher in galactose-grown cells compared with glucose- or lactose-grown cells. The addition of arginine increased the specific activities of these two enzymes with all growth sugars. The specific activity of the third enzyme involved in arginine metabolism (carbamate kinase) was not altered by the composition of the growth medium. In continuous cultures arginine deiminase was not induced, and arginine was not metabolized, until glucose limitation occurred. In batch cultures the metabolism of glucose and arginine was sequential, whereas galactose and arginine were metabolized concurrently, and the energy derived from arginine metabolism was efficiently coupled to growth. No arginine deiminase activity was detected in the nine Streptococcus cremoris strains examined, thus accounting for their inability to metabolize arginine. All nine strains of S. cremoris had specific activities of carbamate kinase similar to those found in S. lactis, but only five S. cremoris strains had ornithine transcarbamylase activity.  相似文献   

11.
The role of dietary arginine in affecting nitrogen utilisation and excretion was studied in juvenile European sea bass (Dicentrarchus labrax) fed for 72 days with diets differing in protein sources (plant protein-based (PM) and fish-meal-based (FM)). Fish growth performance and nitrogen utilisation revealed that dietary Arg surplus was beneficial only in PM diets. Dietary Arg level significantly affected postprandial plasma urea concentrations. Hepatic arginase activity increased (P<0.05) in response to dietary Arg surplus in fish fed plant protein diets; conversely ornithine transcarbamylase activity was very low and inversely related to arginine intake. No hepatic carbamoyl phosphate synthetase III activity was detected. Dietary arginine levels did not affect glutamate dehydrogenase activity. A strong linear relationship was found between liver arginase activity and daily urea-N excretion. Dietary Arg excess reduced the proportion of total ammonia nitrogen excreted and increased the contribution of urea-N over the total N excretion irrespective of dietary protein source. Plasma and excretion data combined with enzyme activities suggest that dietary Arg degradation via hepatic arginase is a major pathway for ureagenesis and that ornithine-urea cycle is not completely functional in juvenile sea bass liver.  相似文献   

12.
L-Arginine was required for growth by a high percentage of strains of Staphylococcus species that were niche-specific and/or host-specific, but was usually not required for growth by species showing a wide host range. Growth stimulation patterns with arginine intermediates indicated that most of the auxotrophic strains had blocks in an early step(s) in arginine biosynthesis. These strains were designated phenotypically as Arg(CHG) according to the Salmonella typhimurium classification scheme. Staphylococcus simulans strains appeared to be either ArgA or Arg I. The ArgI strains of S. simulans and S. capitis had moderate to high ornithine carbamoyltransferase (EC 2.1.3.3) activities and therefore could not be designated as argI mutants. ArgI strains in other species had no or very low ornithine carbamoyltransferase activities. All of the natural Staphylococcus auxotrophs tested grew in the presence of L-citrulline and had moderate to high argininosuccinase (EC 4.3.2.1) activities. Arginine auxotrophs of species with a wide host range were often capable of reverting to arginine-independent or complete prototrophic growth, whereas auxotrophs of species that tended to be niche-specific and/or host-specific were incapable of reversion to arginine-independence, even in the presence of various mutagens. A relationship between the nature of arginine auxotrophy and habitat is suggested.  相似文献   

13.
From an arginine auxotrophic strain, a mutant was isolated which is able to utilize d-arginine as a source of l-arginine and shows a high sensitivity to inhibition of growth by canavanine. Transport studies revealed a four- to five-fold increased uptake of arginine and ornithine in cells from the mutant strain. The kinetics of entry of arginine and ornithine evidenced elevated maximal influx values for the arginine- and ornithine-specific transport systems. A close parallel between arginine transport activity and arginine binding activity with one arginine-specific binding periplasmic protein in the mutant strongly suggests that such binding protein is a component of the arginine-specific permease. The affinity between arginine and the binder, isolated from the mutant cells, as well as the electrophoretic mobility of the protein, remain unchanged. The enhanced transport activity of arginine and ornithine with mutant cells is insensitive to repression by arginine or ornithine, whereas the biosynthesis of arginine-forming enzymes is normally repressible. When transport activity was examined in strains with mutations leading to derepression of arginine biosynthesis, the regulation of arginine transport was found to be normal. These studies support the conclusion that arginine transport and arginine biosynthesis, in Escherichia coli K-12, are not regulated in a concerted manner, although both systems may have components in common.  相似文献   

14.
In the arginine biosynthetic pathway of the vast majority of prokaryotes, the formation of ornithine is catalyzed by an enzyme transferring the acetyl group of N-alpha-acetylornithine to glutamate (ornithine acetyltransferase [OATase]) (argJ encoded). Only two exceptions had been reported-the Enterobacteriaceae and Myxococcus xanthus (members of the gamma and delta groups of the class Proteobacteria, respectively)-in which ornithine is produced from N-alpha-acetylornithine by a deacylase, acetylornithinase (AOase) (argE encoded). We have investigated the gene-enzyme relationship in the arginine regulons of two psychrophilic Moritella strains belonging to the Vibrionaceae, a family phylogenetically related to the Enterobacteriaceae. Most of the arg genes were found to be clustered in one continuous sequence divergently transcribed in two wings, argE and argCBFGH(A) ["H(A)" indicates that the argininosuccinase gene consists of a part homologous to known argH sequences and of a 3' extension able to complement an Escherichia coli mutant deficient in the argA gene, encoding N-alpha-acetylglutamate synthetase, the first enzyme committed to the pathway]. Phylogenetic evidence suggests that this new clustering pattern arose in an ancestor common to Vibrionaceae and Enterobacteriaceae, where OATase was lost and replaced by a deacylase. The AOase and ornithine carbamoyltransferase of these psychrophilic strains both display distinctly cold-adapted activity profiles, providing the first cold-active examples of such enzymes.  相似文献   

15.
16.
Ornithine decarboxylase (ODC) catalyzes the first step in the polyamine biosynthetic pathway, a highly regulated pathway in which activity increases during rapid growth. Other enzymes also metabolize ornithine, and in hepatomas, rate of growth correlates with decreased activity of these other enzymes, which thus channels more ornithine to polyamine biosynthesis. Ornithine is produced from arginase cleavage of arginine, which also serves as the precursor for nitric oxide production. To study whether short-term coordination of ornithine and arginine metabolism exists in rat colon, ODC, ornithine aminotransferase (OAT), arginase, ornithine, arginine, and polyamine levels were measured after two stimuli (refeeding and/or deoxycholate exposure) known to synergistically induce ODC activity. Increased ODC activity was accompanied by increased putrescine levels, whereas OAT and arginase activity were reduced by either treatment, accompanied by an increase in both arginine and ornithine levels. These results indicate a rapid reciprocal change in ODC, OAT, and arginase activity in response to refeeding or deoxycholate. The accompanying increases in ornithine and arginine concentration are likely to contribute to increased flux through the polyamine and nitric oxide biosynthetic pathways in vivo.  相似文献   

17.
Suspension-cultured cells and aseptically cultured roots ofintact plants of Atropa belladonna L. removed tropane alkaloidprecursors arginine (Arg) and ornithine (Orn) at nearly an equalrate from the feeding medium. A great part of Arg- and Orn-derived14C-label was found in ethanol-insoluble compounds, mostly inproteins already after 2 h feeding. Ethanol-soluble label inthe roots was found mainly in amino acids (e.g. glutamine, Gln)after 2 h feeding, and after 20 h also in some intermediatesof the urea cycle (e.g. argininosuccinate). In suspension cultures, subculturing of the initiation callusdecreased both the uptake of the basic amino acids tested andtheir binding on to the apoplastic space. After 20 h feedingwith Arg more label was found in organic acids in stationaryphase suspension cultures with repressed alkaloid synthesisthan in roots producing alkaloids. The growth phase and passagenumber also affected into which amino acids the label was incorporated.When the initiation callus was young (the 3rd passage), theintermediates of the urea cycle were actively labelled, butwhen the initiation callus was older (the 8th passage) and thesuspension formed roots, especially Gln was labelled. Only tracesof -N-methylornithine were detected in feeding experiments withOrn and Arg. Considerable arginase activity with a high pH optimumwas observed in cell suspensions and roots of A. belladonna. Key words: Atropa, arginine, ornithine, roots, suspension culture  相似文献   

18.
K M Yao  W F Fong    S F Ng 《The Biochemical journal》1984,222(3):679-684
The putrescine-biosynthesis pathway in Tetrahymena thermophila was delineated by studying crude extracts prepared from exponentially growing cultures. A pyridoxal phosphate-stimulated ornithine decarboxylase activity competitively inhibited by putrescine was detected. CO2 was also liberated from L-arginine, but analyses by t.l.c. and enzyme studies suggested that the activity was not due to arginine decarboxylase, nor could enzyme activities converting agmatine into putrescine be detected. We conclude that the decarboxylation of L-ornithine is probably the only major route for putrescine biosynthesis in this organism during exponential growth.  相似文献   

19.
The possibility that arginine and lysine might be decarboxylated by rat tissues was investigated. No evidence for decarboxylation of arginine could be found. Lysine decarbosylase (L-lysine carboxy-lyase, EC 4.1.1.18) activity producing CO2 and cadaverine was detected in extracts from rat ventral prostate, androgen-stimulated mouse kidney, regenerating rat liver and livers from rats pretreated with thioacetamide. These tissues all have high ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activities. Lysine and ornithine decarboxylase activities were lost to similar extents on inhibition of protein synthesis by cycloheximide and on exposure to alpha-difluoromethylornithine. A highly purified ornithine decarboxylase preparation was able to decarboxylate lysine and the ratio of ornithine to lysine decarboxylase activities was constant throughout purification. Kinetic studies of the purified preparation showed that the V for ornithine was about 4-fold greater than for lysine, but the Km for lysine (9 mM) was 100-times greater than that for ornithine (0.09 mM). These experiments indicate that all of the detectable lysine decarboxylase activity in rat and mouse tissues was due to the action of ornithine decarboxylase and that significant cadaverine production in vivo would occur only when ornithine decarboxylase activity is high and lysine concentrations substantially exceed those of ornithine.  相似文献   

20.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号