首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Besides 6-ketoprostaglandin F1 alpha, bovine aortic endothelial cells also produced considerable amounts of 6,15-diketoprostaglandin F1 alpha from arachidonic acid, either exogenously added or released from cellular phospholipids. Incubations of particulate fractions of endothelial cells with the cyclic endoperoxides prostaglandin G2 and prostaglandin H2 showed that 6,15-diketoprostaglandin F1 alpha is formed by the action of prostaglandin I2 synthetase on prostaglandin G2. The labile metabolite 15-hydroperoxyprostaglandin I2 is then converted nonenzymatically to the 15-keto derivative. In the presence of reduced glutathione, quantitative analysis of both metabolites by gas chromatography-mass spectrometry showed a significant decrease of 6,15-diketoprostaglandin F1 alpha formation, whereas prostaglandin I2 synthesis was markedly increased. This shift seems to be due to a stimulation of peroxidase by GSH, a well known cofactor of this enzyme. Thus, it seems that a decreased endothelial prostaglandin I2 formation may occur when cellular glutathione levels are reduced as a consequence of oxidant injury and lipid peroxidation. Additionally, ferrous ions seems to be involved in the regulation of endothelial prostaglandin I2 synthesis, since Desferal, a specific ferrous ion chelator that might have antimetastatic properties, produced a pronounced shift from 6,15-diketoprostaglandin F1 alpha to the 6-keto derivative, i.e., prostaglandin I2.  相似文献   

2.
An enzyme immunoassay was developed for a convenient and sensitive assay of 13,14-dihydro-15-ketoprostaglandin F2 alpha, a metabolite of prostaglandin F2 alpha appearing in human blood. The compound was chemically conjugated to beta-galactosidase from Escherichia coli. The enzyme-labeled antigen was mixed with a sample containing 13,14-dihydro-15-ketoprostaglandin F2 alpha, and the mixture was allowed to react competitively with the antibody immobilized in a polystyrene tube. The activity of beta-galactosidase bound to the antibody was assayed by fluorometry. The enzyme activity was plotted against the amount of authentic 13,14-dihydro-15-ketoprostaglandin F2 alpha to obtain a calibration curve, and the compound was detectable over a range of 10 fmol to 10 pmol. Prostaglandins were extracted from human serum by the use of an octadecylsilyl silica column, and the extract gave an abnormally high level of 13,14-dihydro-15-ketoprostaglandin F2 alpha by enzyme immunoassay due to the presence of unidentified interfering substance(s), which was removed by high-performance liquid chromatography (HPLC). The purified material gave a value in the order of 0.1 pmol per ml of human serum. Validity of the enzyme immunoassay was confirmed by radioimmunoassay and gas chromatography/mass spectrometry (GC-MS) of a methyl ester n-butoximedimethylisopropylsilyl ether derivative.  相似文献   

3.
Factors in vitreous humour which regulate prostaglandin production were investigated using cultured rabbit chorioretinal fibroblasts. These cells produced predominantly prostaglandin E2, 6-ketoprostaglandin F1 alpha, a compound likely to be a metabolite of prostaglandin E2 and 5-hydroxyeicosatetraenoic acid. The synthesis of 6-ketoprostaglandin F1 alpha was nearly completely inhibited by the cyclooxygenase inhibitor aspirin and partially inhibited by 10(-6) M dexamethasone (49%) and 10(-5) M forskolin (68%). Addition of 10% rabbit vitreous humour to subconfluent cells maintained in Dulbecco's modified Eagle's medium plus 1% fetal bovine serum resulted in stimulation of 6-ketoprostaglandin F1 alpha production by as much as 246% as measured by radioimmunoassay. Chorioretinal fibroblasts labelled by [3H]arachidonic acid incorporation into cellular phospholipids synthesised greater amounts of all labelled arachidonic acid metabolites in response to vitreous humour. It was concluded, therefore, that there are factors present in vitreous humour of molecular weight above 10 kDa which are capable of stimulating cellular cyclooxygenase activity. Confluent cells also responded to a factor(s) present in vitreous humour. The fraction of less than 10 kDa inhibited 6-ketoprostaglandin F1 alpha production by 50% when used at a concentration of 10%. Furthermore, 6-ketoprostaglandin F1 alpha production in confluent cells (but not subconfluent cells) was inhibited to 40% of control levels by vitamin C at a concentration of 1 mg/100 ml. The latter result points to an inhibitory role for vitamin C in vitreous humour. We conclude, therefore, that vitreous humour contains factors important for the regulation of prostaglandin metabolism in the eye.  相似文献   

4.
Prostaglandin synthesis in human diploid fibroblasts was studied by incubating [14C]-arachidonic acid with cell homogenates. The majority of prostaglandins produced in young cells was 6-ketoprostaglandin F1 alpha. The 6-ketoprostaglandin F1 alpha-producing activity of cultures declined with in vitro aging, and was almost undetectable at the senescent stage, while total production of thromboxane B2, prostaglandin F2 alpha and prostaglandin E2-like metabolites increased with in vitro aging.  相似文献   

5.
Myofibroblasts were cultured successfully from experimental wound tissue in rat palatal mucoperiosteum. Arachidonic acid metabolizing activity in cultured myofibroblasts was compared with that in fibroblasts cultured from normal mucoperiosteum. Prostaglandins biosynthesized from [14C]arachidonic acid in cell-free homogenates of both myofibroblasts and fibroblasts were prostaglandins D2, E2 and F2 alpha, and the activity producing each prostaglandin was not significantly different between the myofibroblasts and the fibroblasts, whereas smooth muscle cells, which are histologically similar to myofibroblasts, produced mainly 6-ketoprostaglandin F1 alpha, and relatively small amounts of prostaglandin E2. The release of arachidonic acid from cells prelabeled with [14C]arachidonic acid was compared among three types of cell. The calcium ionophore A23187 strongly enhanced arachidonic acid release in all three cell types. Bradykinin, 5-hydroxytryptamine and prostaglandin F2 alpha affected the stimulation of arachidonic acid release in the fibroblasts but were less or not effective in the myofibroblasts and smooth muscle cells. In addition, prostaglandin E2 biosynthesized in response to several stimuli was measured by radioimmunoassay. The content of prostaglandin E2 correlated closely with arachidonic acid release. In this study, we showed homogeneity between the myofibroblasts and fibroblasts in prostaglandin synthesizing activity and similarity in response to various stimuli between the myofibroblasts and smooth muscle cells, from the standpoint of arachidonic acid metabolism.  相似文献   

6.
High-performance liquid chromatography and radioimmunoassay were used to identify the prostaglandins synthesized by mouse embryo palate mesenchyme cells. Serum stimulated the release of several different metabolites of arachidonic acid including 6-ketoprostaglandin F1 alpha (the stable product of prostacyclin, prostaglandin I2), prostaglandin E2 and prostaglandin F2 alpha. Compared to control cells, the serum-stimulated cells produce elevated levels of prostaglandin E2 (36-fold), 6-ketoprostaglandin F1 alpha (15-fold) and prostaglandin F2 alpha (7-fold). The acetylenic analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid prevented this accelerated synthesis.  相似文献   

7.
Effects of pregnant mare serum gonadotropin and human chorionic gonadotropin on the formation of 13,14-dihydroprostaglandin F2 alpha, a biologically active compound, were investigated in rat ovarian homogenate. The mass number of the compound, which was formed prostaglandin F2 alpha via 13,14-dihydro-15-ketoprostaglandin F2 alpha in rat ovarian homogenate but was not produced in rat homogenate, accorded with that of the authentic 13,14-dihydroprostaglandin F2 alpha by negative ion chemical ionization mass spectrometry. In the present experiment, the radioactivity of [3H]prostaglandin F2 alpha added to ovarian homogenate was decreased linearly and immediately until the incubation time of 10 min. The formation of 13,14-dihydroprostaglandin F2 alpha was increased up to 60 min. The formation of 13,14-dihydroprostaglandin F2 alpha from prostaglandin F2 alpha was markedly increased by pregnant mare serum gonadotropin and human chorionic gonadotropin. However, there was no additive or synergistic effect of these hormones. The formation of 13,14-dihydroprostaglandin F2 alpha from 13,14-dihydro-15-ketoprostaglandin F2 alpha weas also greatly stimulated by pregnant mare serum gonadotropin and human chorionic gonadotropin. The formation of 13,14-dihydro-15-ketoprostaglandin F2 alpha steeply declined until 24 h after treatment with human chorionic gonadotropin in pregnant mare serum gonadotropin-primed rats. In contrast, the formation of 13,14-dihydroprostaglandin F2 alpha was markedly increased until 24 h after human chorionic gonadotropin treatment, and the level was about 2.5-fold higher than that at 0 h, 48 h after injection of pregnant mare serum gonadotropin.  相似文献   

8.
This study investigated the response of bovine pulmonary artery endothelial cells to incubation in hyperoxia (95% O2-5% CO2). Changes in cell number and morphology, release of lactate dehydrogenase, and production of arachidonic acid metabolites were assessed during continuous exposure of confluent endothelial monolayers to air (air-5% CO2, "controls") or O2 (95% O2-5% CO2, "O2-exposed") for periods of 12-72 h. Control monolayer cell numbers remained constant (approximately 2,000,000 cells/flask), whereas the number of cells in O2-exposed monolayers decreased progressively to 30% of controls (P less than 0.01) by 72 h. As assessed by radioimmunoassay, both control and O2-exposed cells produced the prostacyclin metabolite, 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), and prostaglandin F2 alpha (PGF2 alpha), but no thromboxane metabolite (TxB2) was detected. The O2-exposed cells released significantly more 6-keto-PGF1 alpha and PGF2 alpha than control cells when apparent net production rates over the entire 72-h period were compared. In addition, both control and O2-exposed (48 h) endothelial monolayers released immunoreactive leukotriene B4 (LTB4) on stimulation with calcium ionophore (10 microM A23187). As with the cyclooxygenase products, O2-exposed cells released more immunoreactive LTB4 than did controls. Both cyclooxygenase and lipoxygenase metabolites of arachidonic acid are released by cultured endothelial cells during the development of O2 toxicity.  相似文献   

9.
Metabolism of endogenous prostacyclin was studied in adults and neonates by measuring urinary levels of 6-ketoprostaglandin F1 alpha (spontaneous hydrolysis product) and 2,3-dinor-6-ketoprostaglandin F1 alpha (enzymatically formed by beta-oxidation). Quantification of prostanoids was achieved by capillary gas chromatography-mass spectrometry using the stable isotope dilution technique. Purification of the urinary lipid extract included silicic acid column chromatography and reverse- and straight-phase high-pressure liquid chromatographies. Accuracy of the method was proven by recovery experiments for both metabolites. Partial mass spectra of endogenous 6-ketoprostaglandin F1 alpha and 2,3-dinor-6-ketoprostaglandin F1 alpha were obtained from urine samples. In neonates (third day of life, n - 5 pooled urines) levels of 2,3-dinor-6-ketoprostaglandin F1 alpha (0.28 +/- 0.18 ng/ml) were much lower than those of 6-ketoprostaglandin F1 alpha (2.13 +/- 1.10 ng/ml), indicating low beta-oxidation activity at high prostacyclin formation. In adults (n = 7), levels of 2,3-dinor-6-ketoprostaglandin F1 alpha (0.27 +/- 0.21 ng/ml) and levels of 6-ketoprostaglandin F1 alpha (0.20 +/- 0.11 ng/ml) were about the same, indicating relatively high beta-oxidation at low prostacyclin formation. Values are expressed as mean +/- S.D.  相似文献   

10.
The present study has been performed to investigate how PGs would participate the hatching process. Effects of indomethacin, an antagonist to PGs biosynthesis, on the hatching of mouse blastocysts were examined in vitro. Furthermore, it was studied that prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha) or 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) were added to the culture media with indomethacin. The hatching was inhibited by indomethacin yet the inhibition was reversible. In the groups with indomethacin and PGE2, no improvement was seen in the inhibition of hatching and the inhibition was irreversible. In the groups with indomethacin and PGF2 alpha, inhibition of hatching was improved in comparison with the group with indomethacin. In the groups with indomethacin and 6-keto-PGF1 alpha, no improvement was seen. The above results indicated that PGF2 alpha possibly had an accelerating effect on hatching and a high concentration of PGE2 would exert cytotoxic effect on blastocysts.  相似文献   

11.
15-Keto-13,14-dihydro 6-ketoprostaglandin E1 was positively identified by gas chromatography-mass spectrometry with negative-ion chemical ionisation detection from samples of rat kidney high-speed supernatant incubated with prostaglandin I2 in the presence of NAD+. A decreased formation of this product was observed when NAD+ was substituted with NADP+ and none was observed in the absence of nucleotide or substrate prostaglandin I2. Experiments with [9 beta-3H]prostaglandin I2 showed a time- and concentration-dependent loss of tritium which appeared as tritiated water, typical of reaction of [9 beta-3H]prostaglandin substrates with the enzyme, 9-hydroxyprostaglandin dehydrogenase. Time-course measurements of the appearance of tritiated water showed similar rates with 6-keto[9 beta-3H]prostaglandin F1 alpha and 15-keto-13,14-dihydro 6-keto[9 beta-3H]prostaglandin F1 alpha as substrates. These experiments suggest that the transformation of prostaglandin I2 and 6-ketoprostaglandin F1 alpha into the 15-keto-13,14-dihydro 6-ketoprostaglandin E1 catabolite occurs in this in vitro preparation via the corresponding 15-keto-13,14-dihydro catabolite of 6-ketoprostaglandin F1 alpha.  相似文献   

12.
The prostaglandin synthesizing system in bovine seminal vesicles was characterized by a radiometric assay. Two main products were formed from [1-14C]-arachidonic acid, and their structures were confirmed by mass spectrometry. The less polar product was identical with prostaglandin E2 and the more polar one was identical with a new prostaglandin, i.e., 6-ketoprostaglandin F1alpha.  相似文献   

13.
We determined effects of IL-1alpha, TNFalpha and IFNgamma on sICAM-1 release in culture media from human aortic smooth muscle cells (AOSMC), dermal microvascular endothelial cells (DMEC), keratinocytes (KC), bronchial epithelial cells (BEC) and lung fibroblasts (LF) as determined by ELISA. Under basal conditions of cultures for 20 h, low concentrations of sICAM-1 were only detected in the culture media of two (DMEC and BEC) of these cell types. IL-1alpha, TNFalpha and IFNgamma stimulated sICAM-1 from these cells. IFNgamma stimulated more shedding from AOSMC, BEC and KC than IL-1alpha or TNFalpha. TNFalpha enhanced more sICAM-1 release from DEMC than from AOSMC, BEC and LF. IL-1alpha and IFNgamma or TNFalpha and IFNgamma acted synergistically to enhance shedding of sICAM-1 from these cells. The levels sICAM-1 in pathophysiological conditions may influence leukocyte-vascular cell interactions to block leukocyte transmigration to tissue injury sites as a negative feedback mechanism.  相似文献   

14.
The metabolic transformation of exogenous prostaglandin D2 was investigated in isolated perfused rat lung. Dose-dependent formation (2-150 ng) of 9 alpha,11 beta-prostaglandin F2, corresponding to about 0.1% of the perfused dose of prostaglandin D2, was observed by specific radioimmunoassay both in the perfusate and in lung tissue after a 5-min perfusion. To investigate the reason for this low conversion ratio, we analyzed the metabolites of tritium-labeled 9 alpha,11 beta-prostaglandin F2 and prostaglandin D2 by boric acid-impregnated TLC and HPLC. By 5 min after the start of perfusion, 9 alpha,11 beta-prostaglandin F2 disappeared completely from the perfusate and the major product formed remained unchanged during the remainder of the 30-min perfusion. The major product was separated by TLC and identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 by GC/MS. In contrast, pulmonary breakdown of prostaglandin D2 was slow and two major metabolites in the perfusate increased with time, each representing 56% and 11% of the total radioactivity at the end of the perfusion. The major product (56%) was identified as 13,14-dihydro-15-ketoprostaglandin D2 and the minor one (11%) was tentatively identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 based on the results from radioimmunoassays, TLC, HPLC, and the time course of pulmonary breakdown. These results demonstrate that the metabolism of prostaglandin D2 in rat lung involves at least two pathways, one by 15-hydroxyprostaglandin dehydrogenase and the other by 11-ketoreductase, and that the 9 alpha,11 beta-prostaglandin F2 formed is rapidly metabolized to 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2.  相似文献   

15.
Freshly isolated neonatal porcine aortic tissue (smooth muscle with or without endothelium present) produced approximately 30 ng/mg wet tissue of 6-oxo-prostaglandin F1 alpha (the stable hydrolysis product from prostacyclin) and approximately 15 ng/mg of prostaglandin E2, as measured by radioimmunoassay after 24 h incubation in culture medium. Primary cultures of porcine endothelial and smooth muscle cells (isolated by enzymic digestion of aortic tissue) exhibited the same pattern of prostaglandin production, but absolute values were greater than for fresh tissue, particularly in the case of endothelium. Subcultures of endothelium produced smaller amounts of prostaglandins, although the pattern remained similar. In contrast, subcultures of smooth muscle cells produced a greater total amount of prostaglandins than did primary cultures, and the main product was prostaglandin E2. Experiments with [14C] prostaglandin H2 or [14C]arachidonic acid confirmed that aortic tissue, cultured endothelium, and primary cultures or aortic smooth muscle cells synthesized prostacyclin, and demonstrated that subcultured smooth muscle cells enzymically isomerised prostaglandin H2 to prostaglandin E2. Kinetic studies showed that prostaglandin production by cultured vascular cells was transiently increased by subculture or changing the growth medium, and that production per cell declined with increasing cell density. The change in pattern of prostaglandin production during culture was shown to be due to a rapid decline in the rate of prostacyclin production (which apparently began immediately after tissue isolation), together with a more gradual rise in prostaglandin E2 production. These results indicate that the amounts and ratios of prostaglandins produced by vascular endothelial and smooth muscle cells are greatly affected by the conditions used to isolate and culture the cells; vascular cells in vivo may similarly alter their pattern of prostaglandin production in response to local changes in their environment.  相似文献   

16.
Arachidonic acid and prostaglandin H2 elevate the levels of adenosine 3':5'-monophosphate (cyclic AMP) in Balb/c 3T3 fibroblasts. This effect was inhibited by 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid, an inhibitor of prostaglandin I2 synthase (Claesson, H.-E., Lindgren, J.A. and Hammarstr!om, S. (1977) FEBS Lett. 81, 415-418). After addition of arachidonic acid to 3T3 cultures, cellular cyclic AMP levels and growth medium concentrations of 6-ketoprostaglandin F1 alpha (degradation product of prostaglandin I2) were quantitatively determined. The stimulatory effect of exogenously-added prostaglandin I2 on cellular cyclic AMP levels was also determined. The results indicate that the endogenous production of prostaglandin I2 is sufficient to explain the stimulatory action of arachidonic acid on cyclic AMP formation in 3T3 fibroblasts.  相似文献   

17.
18.
Microsomes prepared from rabbit renal cortex were found to synthesize substantial amounts of 6-ketoprostaglandin F1alpha from prostaglandin G2 or arachidonic acid during an incubation. In contrast, no 6-ketoprostaglandin F1alpha was formed by renal medullary microsomes which synthesize predominantly prostaglandin E2. Mass spectral confirmation of the structure of 6-ketoprostaglandin F1alpha from these incubations demonstrates the ability of the renal cortex to synthesize prostacyclin.  相似文献   

19.
Prematurity is one of the leading causes of infant mortality. It may result from intrauterine infection, which mediates premature labor by stimulating the production of inflammatory lipid mediators such as prostaglandin F2alpha (PGF2alpha). The biological effects of PGF2alpha are mediated via the G protein-coupled receptor FP; however, the molecular mechanism(s) of FP signaling that mediates inflammatory lipid mediator production remains unclear. We reported previously that in the human uterus, a composite organ in which fibroblast, epithelial, and smooth muscle cells are the major constituents, an inverse relationship exists between the levels of PGF2alpha and a steroid-inducible anti-inflammatory protein, uteroglobin. Here we report that, in NIH 3T3 fibroblasts and human uterine smooth muscle cells, FP signaling is mediated via multi-kinase pathways in a cell type-specific manner to activate NF-kappaB, thus stimulating the expression of cyclooxygenase-2. Cyclooxygenase-2 is a critical enzyme for the production of prostaglandins from arachidonic acid, which is released from membrane phospholipids by phospholipase A2, the expression of which is also stimulated by PGF2alpha. Most importantly, uteroglobin inhibits FP-mediated NF-kappaB activation and cyclooxygenase-2 gene expression by binding and most likely by sequestering PGF2alpha into its central hydrophobic cavity, thereby preventing FP-PGF2alpha interaction and suppressing the production of inflammatory lipid mediators. We propose that uteroglobin plays important roles in maintaining homeostasis in organs that are vulnerable to inadvertent stimulation of FP-mediated inflammatory response.  相似文献   

20.
In view of the recent finding that prostaglandin D2 is stereospecifically converted to 9 alpha, 11 beta-prostaglandin F2, an isomer of prostaglandin F2 alpha, a highly specific and sensitive radioimmunoassay for 9 alpha, 11 beta-prostaglandin F2 was developed and applied to determine the content of this prostaglandin in various rat tissues. Antisera against 9 alpha, 11 beta-prostaglandin F2 were raised in rabbits immunized with the bovine serum albumin conjugate, and [3H]9 alpha, 11 beta-prostaglandin F2 was enzymatically prepared from [3H]prostaglandin D2. The assay detected 9 alpha, 11 beta-prostaglandin F2 over the range of 20 pg to 1 ng, and the antiserum showed less than 0.04% cross-reaction with prostaglandin F2 alpha, prostaglandin F2 beta and 9 beta, 11 beta-prostaglandin F2. To avoid postmortem changes, tissues were frozen in liquid nitrogen immediately after removal. The basal level of 9 alpha, 11 beta-prostaglandin F2 was hardly detectable in various tissues of the rat examined, including spleen, lung, liver and brain; although it was found to be 0.31 +/- 0.06 ng/g wet weight in the small intestine. During convulsion induced by pentylenetetrazole, enormous amounts of prostaglandin D2 (ca. 180 ng/g wet weight) and prostaglandin F2 alpha (ca. 70 ng/g) were produced in the brain; however, 9 alpha, 11 beta-prostaglandin F2 was detected neither there nor in the blood. This result demonstrates that the conversion to 9 alpha, 11 beta-prostaglandin F2 is a minor pathway, if one at all, of prostaglandin D2 metabolism in the rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号