首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In recent years, various polymorphic loci and multicopy insertion elements have been discovered in the Mycobacterium tuberculosis genome, such as the direct repeat (DR) locus, the major polymorphic tandem repeats, the polymorphic GC-rich repetitive sequence, IS6110, and IS1081. These, especially IS6110 and the DR locus, have been widely used as genetic markers to differentiate M. tuberculosis isolates and will continue to be so used, due to the conserved nature of the genome of M. tuberculosis. However, little is known about the processes involved in generating these or of their relative rates of change. Without an understanding of the biological characteristics of these genetic markers, it is difficult to use them to their full extent for understanding the population genetics and epidemiology of M. tuberculosis. To address these points, we identified a cluster of 7 isolates in a collection of 101 clinical isolates and investigated them with various polymorphic genetic markers, which indicated that they were highly related to each other. This cluster provided a model system for the study of IS6110 transposition, evolution at the DR locus, and the effects of these on the determination of evolutionary relationships among M. tuberculosis strains. Our results suggest that IS6110 restriction fragment length polymorphism patterns are useful in grouping closely related isolates together; however, they can be misleading if used for making inferences about the evolutionary relationships between closely related isolates. DNA sequence analysis of the DR loci of these isolates revealed an evolutionary scenario, which, complemented with the information from IS6110, allowed a reconstruction of the evolutionary steps and relationships among these closely related isolates. Loss of the IS6110 copy in the DR locus was noted, and the mechanisms of this loss are discussed.  相似文献   

2.
Strain variation in the katG region of Mycobacterium tuberculosis   总被引:6,自引:0,他引:6  
Southern blot analysis of chromosomal DNA from clinical isolates of Mycobacterium tuberculosis using cosmid DNA probes revealed extensive strain variation in the katG region of the genome. In addition to deletion of the katG gene itself in some isoniazid-resistant strains, adjacent DNA fragments were missing or altered in a range of drug-sensitive and drug-resistant isolates. A species-specific 2 kb Kpnl fragment located 10 kb upstream of katG in M. tuberculosis H37Rv hybridized to fragments of differing size in different clinical isolates and was characterized in detail. Sequence analysis of this fragment showed that it comprised three tandem copies of a novel 75 bp repeat element flanked by multiple copies of the previously described 10 bp major polymorphic tandem repeat of M. tuberculosis (MPTR). The copy number of the 75 bp repeat was found to vary between strains, allowing application of a poly-merase chain reaction amplification strategy for strain differentiation. These results indicate that the katG region of the M. tuberculosis genome is highly variable and unstable. The presence of repetitive sequences may contribute to instability in this region of the genome.  相似文献   

3.
Strain differentiation by DNA restriction fragment length polymorphism (RFLP) has been used mainly for the epidemiological purpose of Mycobacterium tuberculosis infection. In this study, we tried to connect the molecular and phenotypic characteristics of M. tuberculosis patient isolates by comparing the DNA fingerprints obtained by RFLP using IS6110 and lipid patterns using two-dimensional thin-layer chromatography (2-D TLC) with silica gel, since M. tuberculosis has a lipid-rich cell envelope which contributes to the virulence and immunomodulatory properties. We found that 66 isolates of M. tuberculosis from tuberculosis patients showed that the occurrence of IS6110 varied from 1 to 24 copies. The IS6110 patterns were highly variable among isolates. Fifty different RFLP patterns were observed, and 12 RFLP patterns were shared by two or more strains. By computerized analysis of the RFLP patterns of M. tuberculosis patient isolates, we found that 95% of the isolates fell into seven clusters, from A to G, with at least two isolates in each (> 30% similarity). Among the cellular lipids, the phospholipid composition did not differ by strain, whereas the glycolipid pattern differed markedly. Especially, the relative concentration of cord factor and sulfolipid, both of which were known as virulent factors, varied by strain. The fingerprints of some strains showed an association between the DNA and glycolipid patterns, even though some of the same DNA fingerprint strains showed differences in lipid patterns. Among the patient isolates, M. tuberculosis strain 249 possessed a specific glycolipid with 2-O-methyl-L -rhamnose and L-rhamnose, which is rarely found in other strains. This glycolipid showed serological activity against the sera of tuberculosis patients, even if the reactivity was not as strong as trehalose dimycolate. It also showed the inhibition of phagosome-lysosome fusion in macrophages, suggesting involvement with virulence. These results suggest that RFLP analysis using IS6110 is useful for clustering the human isolates of M. tuberculosis, however, for further strain differentiation on virulence, a lipid analysis provides more information.  相似文献   

4.
Species of the Paramecium aurelia complex show different levels of intraspecific polymorphism, with P. dodecaurelia revealing a high level of intraspecific variation. Paramecium dodecaurelia strains originating from distant localities in the Palaearctic, North America (USA), and Oceania (Hawaii) were studied in terms of intraspecific differentiation and the degree of speciation. Sequences of genes encoding the ITS1–5.8S-ITS2–5’ end of LSU rDNA (1063–1097 bp) and cytochrome c oxidase subunit I mtDNA (638–644 bp) were obtained from 33 strains of P. dodecaurelia, other P. aurelia species, and another species of the genus Paramecium, with Tetrahymena sp. used as an outgroup. In phylograms, the majority of P. dodecaurelia strains from the Palaearctic appear in one cluster, while strains from Japan, Hawaii and the USA are grouped in another cluster, together with some strains from Italy and representatives of the P. aurelia species complex. Our results tend to support the hypothesis that P. dodecaurelia seems to be a polyphyletic species with several haplotypes similar to or even shared with other members of the P. aurelia species complex. However, it is still an open question whether the revealed intraspecific differences within P. dodecaurelia are the result of ongoing speciation, or perhaps they just indicate genetic differentiation within a species that has a wide geographic distribution.  相似文献   

5.

Background

M. africanum West African 2 constitutes an ancient lineage of the M. tuberculosis complex that commonly causes human tuberculosis in West Africa and has an attenuated phenotype relative to M. tuberculosis.

Methodology/Principal Findings

In search of candidate genes underlying these differences, the genome of M. africanum West African 2 was sequenced using classical capillary sequencing techniques. Our findings reveal a unique sequence, RD900, that was independently lost during the evolution of two important lineages within the complex: the “modern” M. tuberculosis group and the lineage leading to M. bovis. Closely related to M. bovis and other animal strains within the M. tuberculosis complex, M. africanum West African 2 shares an abundance of pseudogenes with M. bovis but also with M. africanum West African clade 1. Comparison with other strains of the M. tuberculosis complex revealed pseudogenes events in all the known lineages pointing toward ongoing genome erosion likely due to increased genetic drift and relaxed selection linked to serial transmission-bottlenecks and an intracellular lifestyle.

Conclusions/Significance

The genomic differences identified between M. africanum West African 2 and the other strains of the Mycobacterium tuberculosis complex may explain its attenuated phenotype, and pave the way for targeted experiments to elucidate the phenotypic characteristic of M. africanum. Moreover, availability of the whole genome data allows for verification of conservation of targets used for the next generation of diagnostics and vaccines, in order to ensure similar efficacy in West Africa.  相似文献   

6.
The occurrence of drug resistance in Mycobacterium tuberculosis, the aetiological agent of tuberculosis (TB), is hampering the management and control of TB in the world. Here we present a computational analysis of recently sequenced drug-sensitive (DS), multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of M. tuberculosis. Single-nucleotide variations (SNVs) were identified in a pair-wise manner using the anchor-based whole genome comparison (ABWGC) tool and its modified version. For this analysis, four fully sequenced genomes of different strains of M. tuberculosis were taken along with three KwaZulu-Natal (KZN) strains isolated from South Africa including one XDR and one MDR strain. KZN strains were compared with other fully sequenced strains and also among each other. The variations were analysed with respect to their biological influence as a result of either altered structure or synthesis. The results suggest that the DR phenotype may be due to changes in a number of genes. The database on KZN strains can be accessed through the website .  相似文献   

7.

Background  

The potential causes for variation in virulence between distinct M. tuberculosis strains are still not fully known. However, differences in protein expression are probably an important factor. In this study we used a label-free quantitative proteomic approach to estimate differences in protein abundance between two closely related M. tuberculosis strains; the virulent H37Rv strain and its attenuated counterpart H37Ra.  相似文献   

8.
The direct repeat region in Mycobacterium tuberculosis complex strains is composed of multiple direct variant repeats (DVRs), each of which is composed of a 36-bp direct repeat (DR) plus a nonrepetitive spacer sequence of similar size. It has been shown previously that clinical isolates show extensive polymorphism in the DR region by the variable presence of DVRs, and this polymorphism has been used in the epidemiology of tuberculosis. In an attempt to better understand the evolutionary scenario leading to polymorphic DR loci and to improve strain differentiation by spoligotyping, we characterized and compared the DNA sequences of the complete DR region and its flanking DNA of M. tuberculosis complex strains. We identified 94 different spacer sequences among 26 M. tuberculosis complex strains. No sequence homology was found between any of these spacers and M. tuberculosis DNA outside of the DR region or with any other known bacterial sequence. Although strains differed extensively in the presence or absence of DVRs, the order of the spacers in the DR locus was found to be well conserved. The data strongly suggest that the polymorphism in clinical isolates is the result of successive deletions of single discrete DVRs or of multiple contiguous DVRs from a primordial DR region containing many more DVRs than seen in present day isolates and that virtually no scrambling of DVRs took place during evolution. Because the majority of the novel spacer sequences identified in this study were confined to isolates of the rare Mycobacterium canettii taxon, the use of the novel spacers in spoligotyping led only to a slight improvement of strain differentiation by spoligotyping.  相似文献   

9.
Mycobacterium tuberculosis, the causative agent of human tuberculosis, synthesizes and secretes siderophores in order to compete for iron (an essential micronutrient). Successful iron acquisition allows M. tuberculosis to survive and proliferate under the iron-deficient conditions encountered in the host. To examine structural determinants important for iron siderophore transport in this pathogen, the citrate-based siderophores petrobactin, acinetoferrin and various acinetoferrin homologs were synthesized and used as iron transport probes. Mutant strains of M. tuberculosis deficient in native siderophore synthesis or transport were utilized to better understand the mechanisms involved in iron delivery via the synthetic siderophores. Acinetoferrin and its derivatives, especially those containing a cyclic imide group, were able to deliver iron or gallium into M. tuberculosis which promoted or inhibited, respectively, the growth of this pathogen. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Restriction fragment length polymorphism (RFLP) analysis of a large number of Japanese isolates of Mycobacterium tuberculosis, containing isolates from small outbreaks of M. tuberculosis infection, and clinical isolates of M. bovis BCG, was carried out using a DNA probe derived from the insertion sequence IS986. Clinical isolates of M. tuberculosis had a high degree of RFLP. The occurrences of the IS element varied from 1 to 19, the majority of isolates having 8 to 15 copies. Very similar fingerprints, however, were seen among strains isolated in the Kanto district. In particular, 3 strains were of the same pattern with or without an additional band. Similarity of the banding patterns of strains islated in the same district was observed in other areas. Six groups of strains, each group arising from a suspected common source of infection, were analyzed. Of these, 5 showed identical fingerprints within each group, but one showed different fingerprints. RFLP patterns of three strains isolated from individuals with lymphadenitis developed about two months after BCG vaccination, and one strain isolated from a bladder cancer patient with BCG instillation therapy were identical to those of BCG-Tokyo which had been used for the vaccination and therapy. These results confirm that RFLP analysis using IS986 is a suitable tool for epidemiology of tuberculosis.  相似文献   

11.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能.  相似文献   

12.
This paper deals with phylogenetic relationships among a set of 90 clinical strains representative of the worldwide diversity of the Mycobacterium tuberculosis complex (Kremer et al. 1999) using eight independent genetic markers: IS6110, IS1081, the direct repeat (DR) locus, and five variable number of tandem DNA repeat loci (VNTR). In a preliminary experiment, phylogenetic trees based on single markers were constructed that led to the detection of some similarities between the VNTR-based and the spoligotyping-based phylogenetic trees. In the second step, a more global phenetic approach based on pairwise comparison of strains within each typing system was used, followed by calculations of mean genetic distances based on all the eight loci and the use of the neighbor-joining algorithm for tree reconstruction. This analysis confirmed our preliminary observations and suggested the existence of at least two new phylogeographical clades of M. tuberculosis, one defined as the ``East African–Indian family' (EA-I), which may find its origin on the African or Asian continents, and the other as the ``Latin American and Mediterranean' (LA-M) family. The existence of these two families was also validated by an independent phylogenetic analysis of spoligotyping on a larger set of shared types (n= 252) and further corroborated by VNTR and katG–gyrA results. The potential origin of these families of bacilli is discussed based on cattle domestication and human migration history. In conclusion, the information contained in insertion sequence and repetitive DNAs may serve as a model for the phylogenetic reconstruction of the M. tuberculosis complex.  相似文献   

13.
Mycobacteriophage therapy is a potential alternative treatment for Mycobacterium tuberculosis infection. Here, we further characterized a mycobacteriophage, Bo4, and evaluated its ability to infect and kill M. tuberculosis. We first found that Bo4 can infect M. tuberculosis and Mycobacterium smegmatis. The observed clear plaques created by Bo4 infection indicated that Bo4 might be a lytic phage able to lyse mycobacterial strains, which was confirmed by phage antimicrobial activity. Bo4 formed clear zones in a medium with pH values of 7.4 or 5.0, suggesting the possibility that Bo4 could lyse mycobacteria, such as M. tuberculosis, in blood as well as in lysosomal macrophages. Further investigation into the Bo4 genome revealed that Bo4 had a dsDNA genome. Moreover, Bo4 contained ~39,318 bp comprised of 66.76 % G+C content. Complete genome sequencing showed high nucleotide identity with cluster G mycobacteriophages, thus classifying Bo4 as a member of the cluster G family. Additionally, annotation of the Bo4 genome indicated that it was a lytic bacteriophage and did not contain any harmful genes that increased mycobacterial virulence or decreased human immunity. Overall, the results of investigation indicate that the Bo4 possesses the potential to destroy M. tuberculosis, making it a potentially useful tool for diagnosing and treating tuberculosis.  相似文献   

14.
This paper shows that in vitro infection of human monocytes by Mycobacterium tuberculosis affected monocyte to macrophage differentiation. Despite the low bacterial load used, M. tuberculosis-infected monocytes had fewer granules, displayed a reduced number of cytoplasmic projections and decreased HLA class II, CD68, CD86 and CD36 expression compared to cells differentiated in the absence of mycobacteria. Infected cells produced less IL-12p70, TNF-α, IL-10, IL-6 and high IL-1β in response to lipopolysaccharide and purified protein M. tuberculosis-derived. Reduced T-cell proliferative response and IFN-γ secretion in response to phytohemagglutinin and culture filtrate proteins from M. tuberculosis was also observed in infected cells when compared to non-infected ones. The ability of monocytes differentiated in the presence of M. tuberculosis to control mycobacterial growth in response to IFN-γ stimulation was attenuated, as determined by bacterial plate count; however, they had a similar ability to uptake fluorescent M. tuberculosis and latex beads compared to non-infected cells. Recombinant IL-1β partially altered monocyte differentiation into macrophages; however, treating M. tuberculosis-infected monocytes with IL-1RA did not reverse the effects of infection during differentiation. The results indicated that M. tuberculosis infection altered monocyte differentiation into macrophages and affected their ability to respond to innate stimuli and activate T-cells.  相似文献   

15.

Background

The highly homologous PE_PGRS (Proline-glutamic acid_polymorphic GC-rich repetitive sequence) genes are members of the PE multigene family which is found only in mycobacteria. PE genes are particularly abundant within the genomes of pathogenic mycobacteria where they seem to have expanded as a result of gene duplication events. PE_PGRS genes are characterized by their high GC content and extensive repetitive sequences, making them prone to recombination events and genetic variability.

Results

Comparative sequence analysis of Mycobacterium tuberculosis genes PE_PGRS17 (Rv0978c) and PE_PGRS18 (Rv0980c) revealed a striking genetic variation associated with this typical tandem duplicate. In comparison to the M. tuberculosis reference strain H37Rv, the variation (named the 12/40 polymorphism) consists of an in-frame 12-bp insertion invariably accompanied by a set of 40 single nucleotide polymorphisms (SNPs) that occurs either in PE_PGRS17 or in both genes. Sequence analysis of the paralogous genes in a representative set of worldwide distributed tubercle bacilli isolates revealed data which supported previously proposed evolutionary scenarios for the M. tuberculosis complex (MTBC) and confirmed the very ancient origin of " M. canettii " and other smooth tubercle bacilli. Strikingly, the identified polymorphism appears to be coincident with the emergence of the post-bottleneck successful clone from which the MTBC expanded. Furthermore, the findings provide direct and clear evidence for the natural occurrence of gene conversion in mycobacteria, which appears to be restricted to modern M. tuberculosis strains.

Conclusion

This study provides a new perspective to explore the molecular events that accompanied the evolution, clonal expansion, and recent diversification of tubercle bacilli.  相似文献   

16.
A simplified amplified-fragment length polymorphism (AFLP) method was developed and applied to genotype 52 Mycobacterium tuberculosis isolates. This method can be carried out using only one restriction enzyme (XhoI), one double strand adapter, and one PCR primer. The amounts of DNA and DNA polymerase, and the concentrations of primer and Mg2+ in the PCR step were optimized using the Basic Sequential Simplex method. AFLP analysis of the isolates generated a total of 24 differently sized bands ranging from 1537 to 121 bp, and 52 different band patterns, with a minimum of 2 and a maximum of 13 bands. The results were compared with the well-established IS6110 restriction fragment length polymorphism (IS6110-RFLP) typing method, which rendered a total of 32 differently sized bands from 1 to 12 kbp, and 52 different band patterns, with a minimum of 3 and a maximum of 15 bands. Therefore, both genotyping methods showed a discriminatory power of samples of 100%. Nevertheless, pairwise comparisons of the 1326 similarity indexes calculated for both typing methods showed a total absence of correlation between the similarity indexes of the two methods. The simplified AFLP method is expected to be more useful for genotyping M. tuberculosis isolates compared to the IS6110-RFLP method, since the former evaluates genetic variations throughout the M. tuberculosis genome. Furthermore, the relatively rapid and low-cost simplified AFLP method compares favorably to the IS6110-RFLP or conventional AFLP methods, and shows great promise for genotyping M. tuberculosis isolates, especially in developing countries or for preliminary screening.  相似文献   

17.
Strains of Mycobacterium bovis, M. bovis BCG, and M. tuberculosis, including a so-called Canetti strain, were analyzed by means of two-dimensional immunoelectrophoresis (2D-IE), 2D-IE combined with enzyme staining, and multilocus enzyme electrophoresis (MEE). The results demonstrated a close antigentic and enzymatic resemblance among all the strains tested, even though the BCG strains could be divided into two groups based on the presence of one precipitinogen. Eight of the precipitinogens were shown to correspond to enzymes in M. bovis BCG and 10 in M. tuberculosis. Thus, catalase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and several others were identified. By means of MEE the strains of M. tuberculosis, M. bovis, and M. bovis BCG could be differentiated. The analyses further indicated that the M. tuberculosis strain Canetti was more closely related to M. bovis than to M. tuberculosis.  相似文献   

18.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

19.
The cryptic plasmid pSBO1 (3904 bp) was isolated from Streptococcus bovis JB1. pSBO1 contained an open reading frame (ORF) that is homologous to sequences encoding the replication protein (Rep) in pEFC1 (isolated from Enterococcus faecalis), pSK639 (Staphylococcus epidermidis), pLA103 (Lactobacillus acidophilus), and pUCL287 (Tetragenococcus halophila). In addition, four 22-bp direct repeats (DRs) were located upstream of the putative replication gene (rep) of pSBO1. Recombinant plasmids (pSBE10 and pSBE11) containing the DRs and putative rep of pSBO1 replicated in S. bovis 12-U-1 and no8 strains. This result indicates that the putative rep encoded Rep and that the replicon of pSBO1 contained the DRs and the rep. Gel shift assays showed that the Rep of pSBO1 bound the 22-bp DRs. Received: 14 September 2000 / Accepted: 28 November 2000  相似文献   

20.
Determining the genetic diversity of M. tuberculosis strains allows identification of the distinct Mycobacterium tuberculosis genotypes responsible for tuberculosis in different regions. Several studies have reported the genetic diversity of M. tuberculosis strains in Mexico, but little information is available from the state of Jalisco. Therefore, the aim of this study was to determine the genetic diversity of Mycobacterium tuberculosis clinical isolates from Western Mexico. Sixty-eight M. tuberculosis isolates were tested for susceptibility to first-line drugs using manual Mycobacteria Growth Indicator Tube method and genotyped using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) pattern analyses. Forty-seven (69.1%) isolates were grouped into 10 clusters and 21 isolates displayed single patterns by spoligotyping. Three of the 21 single patterns corresponded to orphan patterns in the SITVITWEB database, and 1 new type that contained 2 isolates was created. The most prevalent lineages were T (38.2%), Haarlem (17.7%), LAM (17.7%), X (7.4%), S (5.9%), EAI (1.5%) and Beijing (1.5%). Six (12.8%) of the clustered isolates were MDR, and type 406 of the Beijing family was among the MDR isolates. Seventeen (26.2%) isolates were grouped into 8 clusters and 48 isolates displayed single patterns by IS6110-RFLP. Combination of IS6110-RFLP and spoligotyping reduced the clustering rate to 20.0%. The results show that T, Haarlem, and LAM are predominant lineages among clinical isolates of M. tuberculosis in Guadalajara, Mexico. Clustering rates indicated low transmission of MDR strains. We detected a rare Beijing genotype, SIT406, which was a highly resistant strain. This is the first report of this Beijing genotype in Latin America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号