首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A new variant of G6PD with total enzyme deficiency associated with nonspherocytic hemolytic anemia in a 60 year old Frenchman is characterized. Partially purified enzyme revealed slow electrophoretic mobility, decreased G6P affinity, thermal instability, abnormal pH curve with a single peak at pH 5.0, abnormal utilization of 2-deoxy-G6P and deamino NADP. This variant differs from all previously reported variants associated with chronic nonspherocytic hemolytic anemia. Accordingly this variant is designated Gd(-) Rennes.  相似文献   

2.
Summary Considerable genetic heterogeneity in G6PD was found in the Bulgarian population-14 G6PD variants isolated from 117 hemizygous carriers of G6PD deficiency. Of these, G6PD Mediterranean type was a polymorphic variant and G6PD Corinth occured with high frequency. Two new variants were identified-G6PD Rudosem and G6PD Nedelino. In a selected group of 78 subjects with clinical manifestations, four variants were established: G6PD Mediterranian, G6PD Corinth, G6PD Seattle and G6PD Ohut II.  相似文献   

3.
A family with congenital non-spherocytic hemolytic anemia associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency was studied. Two females, heterozygous for the enzyme deficency, had evidence of a hemolytic anemia. The results of chromium-51 erythrocyte life span studies prior to, during, and after periods of primaquine administration suggested that the hemolytic anemia in these women was due to the presence of two populations of red blood cells in their circulation. One population had normal G6PD levels and a normal life span, whereas the other had diminished enzyme activity and a shortened life span.In vitro metabolic studies of the erythrocytes of a heterozygous female and a hemizygous male suggested that, in spite of G6PD deficiency, the synthesis and breakdown of adenosine triphosphate and 2,3-diphosphoglyceric acid was similar to that in normal erythrocytes.  相似文献   

4.
Summary Two males subjects are described with hitherto undescribed glucose-6-phosphate dehydrogenase (G6PD) variants. The first is of French ancestry, the second of Sicilian extraction. Each subject suffered from acute hemolytic anemia following ingestion of broad beans (Vicia fava). In both cases the hemolytic crisis occurred in a late period of life (29 and 58 years). No previous hemolytic crisis was recorded. The electrophoretic and kinetic properties of the mutant enzymes examined after purification from the red cells allowed each to be distinguished from other G6PD variants reported until now. The first variant was named Gd(-) Muret, the other Gd(-) Colomiers.  相似文献   

5.
Summary Erythrocyte glucose-6-phosphate dehydrogenase (G6PD) was characterized in blood samples obtained from 97 randomly selected males with enzyme deficiency from various regions of Guangdong Province, China. Nine new variants (Gd Kaiping, Gd Boluo, Gd Huiyang, Gd Gaomin, Gd Qing-Baijiang, Gd Gaozhou, Gd Huazhou, Gd Nanhai, and Gd Guangzhou) were identified. Of the 31 variants found in this province, Gd Kaiping, Gd Taiwan-Hakka, Gd Haad Yai, Gd Haad Yai-like and Gd Huiyang occurred most frequently. The frequency of each variant was calculated. The results demonstrated that the genetic heterogeneity of G6PD deficiency was high in this area.  相似文献   

6.
Summary A severe hemolytic crisis was observed in a 5-yearold boy of Italian origin. Analysis of his hemolysate revealed a hemizygous deficiency of glucose-6-phosphate dehydrogenese (G6PD) and a heterozygous deficiency of glucosephosphate isomerase (GPI). According to the literature this is the fourth family with a combined deficiency of these two enzymes located on different chromosomes. Only the G6PD deficiency seems to be responsible for the hemolytic crisis.Dedicated to Prof. Dr. Walter Sandritter on occasion of his 60th birthday  相似文献   

7.
Summary The existence of a microheterogeneity of glucose-6-phosphate dehydrogenase (G6PD) in human erythrocyte lysates has been previously demonstrated using isoelectric focusing (Der Kaloustian et al., 1974; Turner et al., 1975). The application of this method, modified in some aspects, to the identification of various G6PD variants led to interesting conclusions. The results reported here have been obtained from a study of four distinct molecular types: Gd(-)Mediterranean, Gd(-) Kabyle, the African Gd(+) A, and a new almost undescribed G6PD variant with severe enzyme deficiency named Gd(-) Muret.  相似文献   

8.
G6PD deficiency c563T is the most common inherent blood disease among the Mediterranean populations and its molecular diagnosis is critical as the enzyme assay fails for heterozygous individuals. The purpose of the study is to estimate the ubiquity of the heterozygous G6PD Med (c563T) variants among Egyptians and UAE nationals living in Dubai. We validated two molecular methods, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and qPCR allelic discrimination assay for detection of G6PD Med variants. Among 100 screened individuals, G6PD c563T variants are 30% of whom 15% are carriers. Sanger sequencing validated the qPCR discrimination assays. In search of a phenotypic marker to detect G6PD heterozygous variants, inheritance of G6PD locus and red-green color vision genes is studied in 1 Egyptian and 2 Emirati families. Among the 3 families, G6PD is polymorphic, displaying 4 phenotypes: in phenotype-1, person is normal, in phenotype-2 the person has no G6PD deficiency but with deuteranopia/deuteranomaly, in phenotype-3 the person is G6PD Med variant with deuteranopia/deuteranomaly and in phenotype 4 the person is G6PD Med variant has normal vision. Based on the molecular analysis of G6PD and Ishihara vision test it can be concluded that the two mutations at the two loci arose independent of each other without any interaction (epistatic effect) between them. Following the pedigree analysis of the two genes for 4 generations it is presumed that it is infeasible to use “deuteranopia /deuteranomaly” as a phenotypic marker to detect G6PD c563T heterozygous individuals among the Egyptian populations.  相似文献   

9.
A total of 6,120 Japanese males were screened for glucose-6-phosphate dehydrogenase deficiency (G6PD). Five cases with the deficiency were discovered. Two of them and an additional two cases have the same variant, G6PD Ube, characterized by moderate enzyme deficiency, fast moving enzyme activity on electrophoresis, high Ki Nadph, utilization of substrate analogues, kinetics, pH optima, and stability. This variant was distinguished for G6PD A- and from other Oriental variants by biochemical parameters. Differences in the frequency and type of the variants between southern Asia and Japan, suggest that the Japanese who have been isolated on islands where malaria is not endemic, may have developed their own variant traits.  相似文献   

10.
Summary Glucose-6-phosphate dehydrogenase (G6PD) deficiency was found in 3.2% of the male population living in the urban area of Algiers. The deficient subjects originated from multiple geographic regions of Northern Algeria, with prevalence of individuals of Berber-Kabyle origin. Red blood cell G6PD was partially purified and characterized in deficient males from 17 families, and six different variants were found. Among them, only one, the Gd(-) Kabyle variant, had been previously described. It was detected in nine families. The other five variants were new: Gd(-) Laghouat (four cases), Gd(-) Blida (one case), Gd(-) Thenia (one case), Gd(-) Titteri (one case), and Gd(-) Alger (two brothers), Strikingly, the common Mediterranean variant was not found. G6PD deficiency is heterogeneous in northern Algeria where autochtonous variants seem to prevail. The Kabyle variant may be common in this country.  相似文献   

11.
Summary Glucose-6-phosphate dehydrogenase (G6PD) has been analyzed by gel electrophoresis and by quantitative assay in an unselected sample of 1524 schoolboys from the province of Matera (Lucania) in southern Italy. We have identified 43 subjects with a G6PD variant. Of these, 31 had severe G6PD deficiency, nine had mild to moderate deficiency, and three had a non-deficient electrophoretic variant. The overall rate of G6PD deficiency was 2.6%. The frequency of G6PD deficiency, ranging from 7.2% on the Ionian Coast to zero on the eastern side of the Lucanian Apennines, appears to be inversely related to the distance of each town examined from the Ionian Coast, suggesting that this geographic distribution may reflect, at least in part, gene flow from Greek settlers. Biochemical characterization has shown that most of the G6PD deficiency in this population is accounted for by G6PD Mediterranean. In addition, we have found several examples of two other known polymorphic variants (G6PD Cagliari and G6PD A): three new polymorphic variants. G6PD Metaponto (class III), G6PD Montalbano (class III), and G6PD Pisticci (class IV); and two sporadic variants, G6PD Tursi (class III) and G6PD Ferrandina (class II). These data provide further evidence for the marked genetic heterogeneity of G6PD deficiency within a relatively narrow geographic-area and they prove the presence in the Italian peninsula of a sene (Gd A–) regarded as characteristically African.  相似文献   

12.
Summary Two new glucose-6-phosphate dehydrogenase (G6PD) variants were discovered in Japan. The first, found in a 9-year-old male, was associated with chronic hemolysis and hemolytic crises after upper respiratory infections. The enzyme activity of the variant was 2.9% of normal. The patient's G6PD showed an increased utilization of substrate analogue, deamino-NADP, and thermal instability. The second variant occurred in a 7-year-old male with druginduced hemolysis. The main enzymatic characteristics were reduced enzyme activity, being 6.4% of normal, faster-thannormal anodal electrophoretic mobility, slightly high Michaelis constant for glucose-6-phosphate, thermal instability, and biphasic pH optima. Enzymatic properties of these variants allowed each to be distinguished from previously reported variants. The first variant was designated Gd (-) Gifu and the other, Gd (-) Fukuoka.  相似文献   

13.
D Toncheva 《Human heredity》1986,36(6):348-351
69 out of 2,304 Vietnamese males were found to be hemizygous carriers of the Gd- gene. The glucose-6-phosphate dehydrogenase (G6PD) deficiency had a polymorphic frequency in the Vietnamese population (0.0299). Genetic heterogeneity in G6PD was found - 3 G6PD variants were found among 13 G6PD-deficient males studied (G6PD Canton, G6PD Hanoi and G6PD Vin Fu). Two new variants were identified - G6PD Hanoi and G6PD Vin Fu.  相似文献   

14.
15.
Summary A new variant of human erythrocyte glucose 6-phosphate dehydrogenase (G6PD), designated G6PD Cagliari, has been characterized. It is associated with severe enzyme deficiency and can be placed in Class 2 of the usual tabulation of G6PD variants. The specific activity of this variant is near normal, while its decay within the circulating erythrocytes is very rapid compared with normals. Genetic analysis of the family of the propositus indicated that the two available females are heterozygotes characterized by extremely unbalanced mosaic phenotypes.  相似文献   

16.
Summary A new glucose-6-phosphate dehydrogenase (G6PD) variant with severe erythrocytic G6PD deficiency and a unique pH optimum is described in a young patient with chronic nonspherocytic hemolytic anemia (CNSHA) and familial amyloidotic polyneuropathy (FAP). Chronic hemolysis was present in the absence of infections, oxidant drugs or ingestion of faba beans. Residual enzyme activity was about 2.6% and 63% of normal activity in erythrocytes and leucocytes, respectively. A molecular study using standard methods showed G6PD in the patient to have normal electrophoretic mobility (at pH 7.0, 8.0 and 8.8), normal apparent affinity for substrates (Km, G6P and NADP) and a slightly abnormal utilization of substrate analogues (decreased deamino-NADP and increased 2-deoxyglucose-6-phosphate utilization). Heat stability was found to be markedly decreased (8% of residual activity after 20 min of incubation at 46°C) and a particular characteristic of this enzyme was a biphasic pH curve with a greatly increased activity at low pH. Although molecular characteristics of this variant closely resemble those of G6PD Bangkok and G6PD Duarte, it can be distinguished from these and all other previously reported variants by virtue of its unusual pH curve. Therefore the present variant has been designated G6PD Clinic to distinguish it from other G6PD variants previously described.  相似文献   

17.
The electrophoretic mobility and level of enzyme activity of glucose-6-phosphate dehydrogenase (G6PD) was established in 100 unrelated Algerian males with G6PD deficiency. DNA from these subjects was analysed for the presence of certain known G6PD mutations by the appropriate restriction enzyme digestion of fragments amplified by the polymerase chain reaction. Where the mutation could not be identified in this way, the samples were subjected to single-strand conformation polymorphism analysis and abnormal fragments were sequenced. In this way, eight different mutations have been identified, of which five are polymorphic and account for 92% of the samples. The most common variants are G6PD A-(46%) and G6PD Mediterranean (23%), both of which were associated with favism. A new polymorphic variant, G6PD Aures, has been identified during the course of this study, whereas another, G6PD Santamaria, has now been established as a polymorphic variant (11%). Thus, G6PD deficiency in Algeria is heterogeneous, suggesting that there has been significant gene flow, both from sub-Saharan Africa and from other parts of the Mediterranean.  相似文献   

18.
A genetic variant of human erythrocyte glucose 6-phosphate dehydrogenase   总被引:1,自引:0,他引:1  
Human erythrocyte G6PD activity was measured in more than 500 subjects in Isfahan, Iran, and the percent of enzyme deficiency for males and females are reported. Some properties of the abnormal enzyme is compared with its normal counterpart. Apparent Km values of glucose 6-phosphate for the variant and normal enzymes were 37 and 101 microM, respectively. The variant enzyme was less resistant to inhibition by 40 microM NADPH (72% inhibition) than the normal enzyme (48% inhibition). The mode of inhibition for both enzymes was competitive with NADP+. ATP at 1.5 mM concentration also inhibited normal and variant enzymes at 17% and 10%, respectively. The inhibition was competitive with glucose 6-phosphate. Polyacrylamide gel electrophores showed that normal enzyme has one major and another weak active bands, while the variant enzyme under identical conditions shows only one active band corresponding to the major band of the normal enzyme. Thermostability of variant G6PD was slightly lower that normal but no significant differences observed in their energy of activation. The activity pH profile of the variant enzyme was truncate.  相似文献   

19.
Summary A new G6PD variant, called G6PD Vientiane, has been discovered in a patient from Laos.The characteristics of this variant are: mild enzyme deficiency (about 50% of the normal activity) in the granulocytes and the red cells, with normal G6PD-related antigen concentration; increased stability; normal Km glucose 6-phosphate and NADP+; increased inhibition constant by NADPH; decreased inhibition by ATP; slightly increased utilization of the substrate analogue; abnormal pH curve, with maximum activity at pH 9.5; slightly reduced starch gel electrophoretic migration. The implications of the molecular stability of a deficient mutant variant are discussed.  相似文献   

20.
Mouse chimeras from embryonic stem cells in which the X-linked glucose 6-phosphate dehydrogenase (G6PD) gene had been targeted were crossed with normal females. First-generation (F(1)) G6PD(+/-) heterozygotes born from this cross were essentially normal; analysis of their tissues demonstrated strong selection for cells with the targeted G6PD allele on the inactive X chromosome. When these F(1) G6PD(+/-) females were bred to normal males, only normal G6PD mice were born, because: (i) hemizygous G6PD(-) male embryos died by E10.5 and their development was arrested from E7.5, the time of onset of blood circulation; (ii) heterozygous G6PD(+/-) females showed abnormalities from E8.5, and died by E11.5; and (iii) severe pathological changes were present in the placenta of both G6PD(-) and G6PD(+/-) embryos. Thus, G6PD is not indispensable for early embryo development; however, severe G6PD deficiency in the extraembryonic tissues (consequent on selective inactivation of the normal paternal G6PD allele) impairs the development of the placenta and causes death of the embryo. Most importantly, G6PD is indispensable for survival when the embryo is exposed to oxygen through its blood supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号