首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this overview of results from our laboratory, we address the question of the role of estrogens during early steps of metastasis, involving cell invasion through the basement membrane and cell motility. The motility of several estrogen receptor (ER) positive breast (MCF7, T47D) and ovarian (BG-1, SKOV3, PEO4) cancer cell lines was studied using a modified Boyden chamber assay. We observed, in all cases, estradiol induced inhibition of cancer cell invasion and motility. A similar inhibitory effect of estradiol was found when the wild-type ER was stably transfected in the ER-negative MDA-MB231 cells and 3Y1-Ad12 cancer cells. The mechanism of this inhibitory effect is unknown. In ovarian cancer, however, it may involve intermediary proteins such as fibulin-1, an extracellular matrix protein that strongly interacts with fibronectin and which is induced by estrogen and secreted by ovarian cancer cells. We conclude that estrogens in ER-positive breast and ovarian cancers have a dual effect, since they stimulate tumor growth but inhibit invasion and motility. This may be consistent with the good initial prognostic value of ER-positive breast cancers compared to ER negative breast cancers noted in several clinical studies.  相似文献   

2.
Two cDNA libraries have been constructed with RNA prepared from the estrogen-responsive breast cancer cell lines, MCF7 and ZR 75. They were screened by differential hybridization for estrogen-regulated sequences. A total of 11 different RNAs were isolated from the MCF7 cell cDNA library and four from the ZR 75 cell cDNA library. Only two sequences were isolated from both libraries. The levels of the 13 different RNAs are induced between 2.5- and 100-fold by estrogen in MCF7 cells. The expression and regulation by estrogen of the RNAs was examined in eight different human tumor cell lines. The relative abundance of each RNA varied in the different cell lines. The expression of three RNAs (pNR-1, pNR-2, and pNR-25) was detected only in estrogen-responsive breast cancer cells. The sequences that were expressed in all eight cell lines were regulated by estrogen only in the three estrogen-responsive breast cancer cell lines. The response of the RNAs to other classes of steroids and to different concentrations of estrogen was characterized in more detail. The extent to which different concentrations of estradiol induced each RNA varied, but half-maximal induction of most of the RNAs occurred between 2 and 5 X 10(-11) M. The time at which increased RNA levels were first detected following exposure to estradiol also varied. Estrogen increased the levels of some RNAs within 15 min, while for others there was a lag of 4 h.  相似文献   

3.
Recent clinical studies estimate that 60-70% of human ovarian and breast cancers overexpress the estrogen receptor (ER). However, despite the established mitogenic effects of estrogen in these tumors, proliferative markers of hormone action are limited. In the current study, we report that the growth stimulatory cytokine stromal cell-derived factor 1 (SDF-1) is a bona fide target of estrogen action in ERalpha-positive human ovarian and breast cancer cells. Notably, estradiol treatment of BG-1 (ovarian carcinoma) and MCF-7 (breast carcinoma) cells leads to rapid and robust induction of the SDF-1alpha and beta isoforms. This response is blocked by the pure ER antagonist ICI 182,780 and is not apparent in ER-negative ovarian cells, indicating that SDF-1 regulation is ERalpha mediated. Treatment with the protein synthesis inhibitor cycloheximide had no effect on estradiol induction of induction of SDF-1 mRNA levels mRNA levels, demonstrating that SDF-1 is a direct target of ERalpha. SDF-1 protein levels, although undetectable under basal conditions, were strikingly increased by hormone both intracellularly and in the media of cultured BG-1 and MCF-7 cells. In cell proliferation assays, the mitogenic effects of estradiol were neutralized by addition of an SDF-1 antibody and mimicked by the addition of exogenous SDF-1 protein, indicating that SDF-1 mediates the proliferative actions of hormone. Furthermore, activation of the SDF-1 receptor CXCR4 stimulated BG-1 and MCF-7 cell proliferation in a manner comparable to estradiol. Taken together, these results demonstrate a novel estrogen-mediated paracrine pathway for inducing cancer cell proliferation and suggest that SDF-1 and CXCR4 may represent novel therapeutic targets in ERalpha-positive ovarian and breast tumors.  相似文献   

4.
We previously found that transferrin (Tf) differentially stimulated the growth of highly metastatic variant lines of murine melanoma and that these highly metastatic cells also had greater numbers of Tf receptors on their cell surfaces. In the present study we found that highly metastatic rat mammary adenocarcinoma cell lines also responded differentially to Tf in proliferation assays, and cell monolayers bound Tf in relation to their metastatic potential (MTPaB10 > MTPaB5 > MTLn3 > MTLn2 > MTC > MTF7 > MTPa). The brain-colonizing lines PaB10 and PaB5 were the most responsive to Tf and had the highest numbers of Tf receptors. Different human breast cancer cell lines also responded differentially to Tf in proliferation assays and bound different amounts of Tf to their cell surface Tf receptors. Transferrin binding, but not growth response, correlated with metastatic and invasive properties of lines selected from the human MCF-7 series (MCF7/LCC2 > MCF7/LCC1 > MCF7). In examining the transferrin binding and growth response of lines from the human MDA series, the Tf binding and growth response was MDA231 > MDA435 > MDA468. The lines MDA435 and MDA231 were metastatic in nude mouse assays, whereas the line MDA468 was not. Scatchard analysis indicated the presence of a single class of receptor for Tf on the rat and human mammary cell lines. The results suggest that neoplastic cells displaying various metastatic properties may express differing numbers of Tf receptors and respond differently to growth factors such as Tf. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Estrogen is known as a major risk factor in tumorigenesis of the endometrium. The aim of this study is to establish stable estrogen-responsive endometrial cancer cell lines and to investigate the mechanism of estrogen action, focusing on cell-cycle regulation. Human wild-type estrogen receptor cDNA was transfected into endometrial cancer cells (Ishikawa) and estrogen-responsive cell lines were cloned. Their estrogen responsiveness was evaluated by the effect of estrogen on cellular growth and progesterone receptor expression. It was quantitatively estimated by immunocytochemistry or immunoblotting how the expression of cell-cycle regulators such as cyclin D1, cyclin E, Cyclin A, p53, p21 and p27 was regulated by estrogen. A cell line stably responsive to estrogen was established, and cells proliferated and the glandular structure was formed by estrogen stimulation. Cyclin D1 expression increased at 6–24 h and cyclin A gradually increased until 48 h of estrogen treatment compared with untreated cells. On the other hand, p53 and p21 expressions decreased at 6–24 h, and p27 gradually decreased until 24 h by estrogen. Our results show that the stimulatory effect of estrogen on cell proliferation may be regulated by the up-regulation of cyclin D1 and cyclin A, and down-regulation of p53, p21 and p27. This cell line is useful to clarify the molecular mechanism of estrogen action on endometrial cancer.  相似文献   

6.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. The mechanism underlying the increased proliferation could involve the induction of components of the insulin-like growth factor signal transduction pathway by estrogen. In this study we have examined the regulation of the expression of insulin receptor substrate-1, a major intracellular substrate of the type I insulin-like growth factor receptor tyrosine kinase. Estradiol increased insulin receptor substrate-1 mRNA and protein levels at concentrations consistent with a mechanism involving the estrogen receptor. Insulin receptor substrate-1 was not induced significantly by the antiestrogens tamoxifen and ICI 182,780, but they inhibited the induction of insulin receptor substrate-1 by estradiol. Analysis of tyrosine-phosphorylated insulin receptor substrate-1 showed that the highest levels were found in cells stimulated by estradiol and insulin-like growth factor-I, whereas low levels were found in the absence of estradiol irrespective of whether type I insulin-like growth factor ligands were present. Insulin receptor substrate-2, -3, and -4 were not induced by estradiol. These results suggest that estrogens and antiestrogens may regulate cell proliferation by controlling insulin receptor substrate-1 expression, thereby amplifying or attenuating signaling through the insulin-like growth factor signal transduction pathway.  相似文献   

7.
Estrogen sensitizes the MCF-7 estrogen-responsive breast cancer cell line to the mitogenic effect of insulin and the insulin-like growth factors (IGFs). This sensitization is specific for estrogen and occurs at physiological concentrations of estradiol. Dose-response experiments with insulin, IGF-I, and IGF-II suggested that the sensitization is mediated through the type I IGF receptor. Binding experiments with 125I-IGF-I and hybridization of a type I IGF receptor probe to RNA showed that the levels of the type I IGF receptor and its mRNA are increased 7- and 6.5-fold, respectively, by estradiol. IGF-I and estradiol had similar synergistic effects on other estrogen-responsive breast cancer cell lines, but IGF-I alone increased the proliferation of the MDA MB-231 cell line which is not responsive to estrogens. These experiments suggest that an important mechanism by which estrogens stimulate the proliferation of hormone-dependent breast cancer cells involves sensitization to the proliferative effects of IGFs and that this may involve regulation of the type I IGF receptor.  相似文献   

8.
The antiproliferative effect of antiestrogens in breast cancer is believed to be entirely due to the inhibition of estrogen induced growth. We show here that non-steroidal antiestrogens inhibit the growth of the human breast cancer MCF7 cells in the complete absence of estrogens (phenol-red-free medium) when cell proliferation is stimulated by insulin or epidermal growth factor. This non-antiestrogenic effect of antiestrogens is, however, mediated by accessible estrogen receptor sites, as it is not observed in receptor negative hormone-independent breast cancers, and is rescued by estradiol but not by insulin. We conclude that antiestrogens inhibit cell proliferation by inhibiting growth factor action as well as estrogen action and that in both cases, accessible estrogen receptors are required.  相似文献   

9.
Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer   总被引:10,自引:0,他引:10  
Emerging data suggest that signaling by heparin-binding growth factors is influenced by the sulfation state of N-acetylglucosamine residues of heparan sulfate proteoglycans (HSPGs). Here we report that the recently identified protein HSulf-1, a heparin-degrading endosulfatase, encodes a cell surface-associated enzyme that diminishes sulfation of cell surface HSPGs. The message encoding this enzyme is readily detectable in a variety of normal tissues, including normal ovarian surface epithelial cells, but is undetectable in 5 of 7 ovarian carcinoma cell lines and markedly diminished or undetectable in approximately 75% of ovarian cancers. Similar down-regulation is also observed in breast, pancreatic, renal cells, and hepatocellular carcinoma lines. Re-expression of HSulf-1 in ovarian cancer cell lines resulted in diminished HSPG sulfation, diminished phosphorylation of receptor tyrosine kinases that require sulfated HSPGs as co-receptors for their cognate ligands, and diminished downstream signaling through the extracellular signal-regulated kinase pathway after treatment with fibroblast growth factor-2 or heparin-binding epidermal growth factor. Consistent with these changes, HSulf-1 re-expression resulted in reduced proliferation as well as sensitivity to induction of apoptosis by the broad spectrum kinase inhibitor staurosporine and the chemotherapeutic agent cisplatin. Collectively, these observations provide evidence that HSulf-1 modulates signaling by heparin-binding growth factors, and HSulf-1 down-regulation represents a novel mechanism by which cancer cells can enhance growth factor signaling.  相似文献   

10.
In order to measure the formation and degradation rates of estradiol by human breast cancer cells, after assessing the biochemical basis of hormone responsiveness and growth response to estrogens, we considered both responsive, estrogen receptor (ER) positive, and non-responsive, ER-negative, breast cancer cell lines, i.e. MCF7, ZR75-1 and MDA-MB231. To this end, we employed a novel “intact cell” approach which allows us, after 24 h incubation, to analyze several enzyme activities in sequence, concurrently with the monitoring of labeled precursor degradation. Our investigations led to the following evidence: (a) the reductive activity of the 17β-hydroxysteroid oxoreductase (17β-HSOR) appears to be higher than the oxidative only in responsive, ER-rich MCF7 and ZR75-1 cells, as also previously observed by others; (b) this activity is, on the contrary, much lower in MDA-MB231 cells and other unresponsive, ER-poor breast cancer cell lines; (c) conversely, the oxidative activity shows an opposite pattern, being limited in MCF7 and ZR75-1 cells and much higher in MDA-MB231 cells. Overall, a 17β-HSOR reductive pathway prevails in both MCF7 and ZR75-1 cells, whilst the oxidative pathway is prevalent in MDA-MB231 cells, leading to a large formation of estrone that is no further metabolized, at least in the experimental conditions used. Our results may provide a likely explanation of previous data on the different estrogen content of breast tumor tissues.  相似文献   

11.
12.
13.
This work describes a reciprocal relationship between cell density and levels of insulin-like growth factor receptors (IGFR) in MCF7 human breast cancer cells, which adds a new dimension to the mechanism of cross-talk between estrogen and insulin-like growth factors in the regulation of breast cancer cell growth. The reduced binding of both (125)I-IGF1 and alphaIR3 anti-IGFR antibody to whole cells showed that IGFR are lost from the surface of MCF7 cells as cell density increases, and this occurred irrespective of the presence or absence of estradiol. Western immunoblotting further confirmed loss of type I IGFR from MCF7 cells with increasing cell density. Long term estrogen deprivation was found to increase the levels of IGFR at all cell densities, such that after 96 weeks of estrogen deprivation, IGFR levels had become similar at the highest cell density in the absence of estradiol to the IGFR levels at the lowest cell density in the estrogen-maintained cells, and the levels of IGFR could be increased still further by estradiol. This overexpression of IGFR in the estrogen-deprived cells correlated with a reversal of response to exogenously added ligand, in that concentrations of insulin, IGFI, and IGFII that had stimulated growth of the estrogen-maintained cells became growth inhibitory to the estrogen-deprived cells. Blockade of the IGFIR with the alphaIR3 anti-IGFR antibody could partially inhibit the growth of the estrogen-deprived cells, suggesting that up-regulation of IGFR in these cells may contribute to the mechanism of adaptation to growth in steroid-deprived conditions which results in progression to estrogen independence of cell growth.  相似文献   

14.
15.
16.
We previously demonstrated that antiestrogen 4-hydroxytamoxifen (OH-Tam) blocks the mitogenic activity of growth factors in breast cancer. We now investigate this mechanism by evaluating how OH-Tam affects growth factor binding and receptor tyrosine kinase activity. We show here that OH-Tam has an opposite effect on epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) binding in estrogen receptor (ER) positive cells. A decrease in IGF-1 binding sites may explain the reduced IGF-I mitogenic effect, whereas an increase in high affinity EGF binding associated with a decrease in in vitro receptor autophosphorylation rather favors the possibility of an alteration in EGF receptor tyrosine kinase activity. We conclude that OH-Tam may prevent growth factor action in ER+ cells both by modulating the concentration of growth factor binding sites and by altering growth factor receptor functionality.  相似文献   

17.
18.
We examined the expression of the estrogen and epidermal growth factor (EGF) receptors in a drug-resistant subline of MCF-7 cells in order to study potential alterations in hormone dependence or in the growth factor pathway that could be related to the development of drug resistance in human breast cancer. The drug-resistant subline was derived from MCF-7 cells by selection with Adriamycin in the presence of the P-giycoprotein antagonist, verapamil, to prevent acquisition of the classical multidrug resistance phenotype. The Adriamycin-resistant cells retain estrogen-binding, estrogen-responsive monolayer growth, and estrogen-dependent tumorigenesis. Estrogen-binding studies demonstrate 1.4 × 106 sites per cell with unaltered affinity when compared to parental MCF-7 cells, which have 2.7 × 105 sites per cell. An increase in expression of EGF receptor, eight to 12-fold, occurred early in the selection for drug resistance, and appears to be unrelated to verapamil exposure, since cells maintained in Adriamycin without verapamil also have increased EGF receptor expression. Partially drug-sensitive revertants carried a verapamil, but out of Adriamycin, demonstrate a decline in EGF receptor expression. We postulate that activation of growth factor pathways in drug-resistant cells may enhance mechanisms of drug resistance, or provide mitogenic stimuli for cells to recover after damage by drug exposure. © 1993 Wiley-Liss, Inc.  相似文献   

19.
20.
We have studied the regulation by estradiol of the mannose-6-phosphate (Man-6-P)/insulin-like growth factor-II (IGF-II) receptor concentration in different breast cancer cell lines. The mRNA level was assayed by Northern blot using the H5.1 cDNA probe. The protein level was assayed by Western ligand blot, by binding saturation with [125I]procathepsin-D on total membrane preparations, and by immunoprecipitation of 35S-labeled proteins. In three estrogen receptor-positive cell lines (MCF7, T47D, and ZR75-1), estradiol specifically decreased the steady state level of the Man-6-P/IGF-II receptor protein and mRNA. Moreover, in different cell lines and in primary culture of normal mammary cells, the secretion of procathepsin-D was inversely correlated with the level of Man-6-P/IGF-II receptor protein and mRNA. We conclude that estradiol down-regulates the Man-6-P/IGF-II receptor in breast cancer cells. Since two of its ligands, procathepsin-D and IGF-II, are induced by estrogen, we propose that the Man-6-P/IGF-II receptor becomes saturated after estrogen treatment. This model might explain the previously described estrogen-induced secretion of procathepsin-D and other lysosomal proenzymes routed by the same transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号